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ABSTRACT

In this paper, we study weather classification from images

using Convolutional Neural Networks (CNNs). Our approach

outperforms the state of the art by a huge margin in the

weather classification task. Our approach achieves 82.2%

normalized classification accuracy instead of 53.1% for the

state of the art (i.e., 54.8% relative improvement). We also

studied the behavior of all the layers of the Convolutional

Neural Networks, we adopted, and interesting findings are

discussed.

Index Terms— Deep Learning, Weather Classification,

Image Classification, Convolutional Neural Networks, Image

Convolutional Activation Feature

1. INTRODUCTION

The weather conditions not only strongly influences us in our

daily lives [1] through the solar energy system and outdoor

sporting events as examples, but also affects the functionality

of many visual systems including outdoor video surveillance

and vehicle assistant driving systems [2, 3] (by heavy rain,

haze, etc.). It is no doubt that, judging the weather condi-

tions by a single image, also known as weather classification

task, plays a vital role in many visual and weather systems.

Nowadays, the weather classification task is commonly ac-

complished by the human vision or expensive sensors. Since

weather condition is local to an area, lack of the required hu-

man resources and/or the expensive sensors limits the avail-

ability of local measurement of the weather condition. Re-

cently, researchers argued that computer vision techniques

could be developed to accurately classify weather conditions

through images, which might save expensive human and in-

strumental resources (i.e., sensors) since economical surveil-

lance cameras are ubiquitous and would be sufficient to ac-

complish weather classification. In this paper, we refer to

weather classification from images as the task of predicting

the class of the weather given an image (e.g., cloudy, sunny,

etc.).

Only very few works have been proposed to investigate

weather classification from a single image [1, 2, 3, 4]. Most

of these methods can be divided into three basic steps [2, 3, 4].

The first step is to extract the Regions of Interest (ROIs) in a

weather image, e.g., sky region and road region extraction,
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then use several histogram descriptors to represent the dif-

ferent ROIs and finally some classifiers, e.g., Support Vec-

tor Machine (SVM) and Adaboost. These approaches may

work well for images captured from the constrained environ-

ment but fails for weather classification images, taken in the

wild (e.g., classifying an image without any sky region us-

ing methods that highly depends on sky features). In order

to better address these challenges, Cewu et al recently pro-

posed a complex collaborative learning framework via ana-

lyzing multiple weather cues [1]. Specifically, this method

involves many pre-processing techniques, such as image seg-

mentation, sky detection, haze detection and boundary detec-

tion, which makes the model highly relies on the performance

of the aforementioned techniques.

Although the previous works provide interesting solu-

tions for weather classification, the performances of these

approaches are unappealing. As far as we know, the best nor-

malized classification accuracy achieved in the challenging

weather image dataset, which consists of 10K images, is only

53.1% (the regular accuracy is 76.5%) [1]. Figure 1 (left)

shows a challenging image with sunny weather condition.

It was also reported in [1] that the histogram of mean light-

ness of sunny and cloudy images substantially overlap, which

makes the dataset very challenging. We attribute the low

performance of [1] mainly to the engineered image features

adopted in this method. Compared to the typical image clas-

sification task, weather classification from images is affected

by various factors, e.g., illumination, reflection, scene and

shadow. These factors are highly coupled with each other and

therefore the categorization manifold is highly nonlinear. Al-

though the previous engineered approaches can satisfy some

desirable properties and mitigate some undesirable properties

from these factors, they cannot well capture such nonlinearity

of the categorization manifold, which makes discrimination



between weather classes a hard problem.

Motivated by the remarkable successes of Convolutional

Neural Networks (CNNs) in computer vision and machine

learning [5, 6, 7, 8, 9], we adopt CNNs to solve the weather

classification task. There are three reasons for us to choose

this technique: The CNN is a neural network model which

captures nonlinear mapping between the different spaces,

e.g.,. feature space and label space; Deep CNN has demon-

strated the powerful discriminating power in extensive image

representation and classification tasks; CNNs are simple and

explicit end-to-end convolutional architectures, which can

simplify the weather classification, without the need for engi-

neered features (e.g. HOG [10], GIST [11]).

Most CNN works are designed for addressing the object

recognition and detection tasks [5, 6, 8, 9]. However, weather

classification is quite different to these issues. It is more sen-

sitive to factors, such as lighting condition and the status of

sky and shadows, rather than object-related information, such

as shape and texture. This paper focuses on studying the fea-

ture spaces introduced by the different layers of CNN in the

weather classification task. There are three main questions

that we aim to answer:

1. How good is the representation at different layers of a

pre-trained CNN for addressing the weather classifica-

tion problem?

2. How fine-tuning of a pre-trained CNN optimized for

weather classification dataset will affect the representa-

tion at each layer of the network?

3. How spatial coherence is important in CNN-based

weather classification?

We conducted several experiments to address all these

questions over different layers of the CNNs for the weather

problem. Adopting CNNs, we concluded our work by signif-

icantly outperforming the state-of-the-art by 54.8%.

2. METHODOLOGY

Our work is inspired by the recent success of deep Convo-

lutional Neural Network (CNN) proposed by Krizhevsky et

al. [5], which is the winner of LSVRC-2012 ImageNet chal-

lenge [12]. Krizhevsky’s CNN is based on Yann LeCun’s ar-

chitecture, which is used for digit recognition [13]. However,

it is composed of 8 layers (deeper than Yann LeCun’s CNN)

and includes 1000 neurons in the output layer corresponding

to 1000 classes). We follow a training paradigm similar to [5]

for studying and learning deep representations for the weather

classification task.

Figure 1 sketches the CNN-architecture that we adopt

to tackle the two-class weather classification task. The

first seven layers of this network is defined with the same

configuration of [5]. They mainly consists of five convo-

lutional/pooling layers followed by three fully connected

layers. In contrast to [5], the eighth (output) layer in the

weather classification CNN has two nodes corresponding to

sunny and cloudy classes.

2.1. Loss function

The weather classification loss is defined by the multinomial

logistic regression objective. We optimized the CNN param-

eters by maximizing the average of the log-probability of the

correct label over the training examples. The multinomial lo-

gistic loss is sometimes denoted as softmax loss. We denote

the softmax loss of a training example image x with label

l ∈ {Sunny,Cloudy} as loss(x, l).

2.2. Training and Testing

The weather classification CNN-models were trained by the

back-propagation algorithm with batch stochastic gradient de-

scend (batch size = 50 images) such that the softmax loss is

minimized. Since training is done per batch, the losses con-

tributed by each example are summed up for the given batch

which is fed to the back-propagation algorithm. The update

of the CNN parameters is mainly conducted by propagating

the gradient of the loss(xi, li) for all (xi, li) in the training

batch. The base learning rate is assigned to 0.5 · 10−3. The

learning rate of the output layer’s parameters are assigned to

be ten times higher than the learning rate of the parameters

of the remaining layers which is assigned to the base learning

rate. This is since the parameters of the output layer is initial-

ized randomly, while the parameters of the remaining layers

were initialized from the pre-trained CNN on ImageNet [5].

This methodology that started from a pre-trained network and

adapt it to a new task, like weather classification in our case,

is called fine-tuning. Fine-tuning has been shown to be suc-

cessful in other tasks like Object Recognition [6, 14].

The decay of the learning rate γ is assigned to 0.1. The

policy of the learning rate is step for each 5000 iterations. The

momentum and the weight decay were assigned to 0.9 and

0.0001 respectively. Training images are randomly shuffled

before feeding the CNN for training. Following the the state-

of-art methods for training CNNs, Dropout technique [15] is

used for better generalization. We use Caffe Deep Neural Net-

work tool [7] for training and testing the models in this paper.

During training, we augment the training dataset in

this study by reflecting the images and randomly sam-

pling 227×227 patches from the downscaled images of size

256×256. At test time the center 227×227 patches are taken.

The data and the models are publicly available here [16].

2.3. Studied Layers

We study the performance of all the layers on each of pre-

trained CNN [5], and the weather CNN in figure 1. We de-

note these layers in order as: Pool1, Pool2, Conv3, Conv4,

Conv5, Pool5, FC6, FC7, FC8 (output layer) where Pool in-

dicates Max-Pooling layers, Conv indicates layers performing

convolution on the previous layer and FC indicates fully con-

nected layer. The last fully connected layer (FC7) is fed to an

N -way softmax which produces a distribution over the cate-

gory labels of the dataset, N = 2 for weather classification



oriented CNN and N = 1000 for pre-trained CNN on Ima-

geNet, which has 1000 object classes.

In order to study these layers, we extract the activation

of each of these layers as a learning representation given an

image (a feature vector for each layer). In order to evaluate

Pool1 to FC7 in both the ImageNet pre-trained CNN and the

weather classification oriented CNN, we apply SVM on these

features. Since, the weather-CNN FC8 layer can directly pre-

dict the weather class, there is no need to perform SVM to

predict the weather class. On the other hand, we learn an

SVM classifier on ImageNet-CNN FC8 layer that consists of

1000 dimensions corresponding to ImageNet visual objects

which have a semantic meaning. The purpose of this experi-

ment to see whether these semantic dimensions could help do

weather classification.

3. EXPERIMENTS

3.1. Experimental Setting

We evaluate the feature representations and the CNNs on the

most recent and largest weather image dataset, which has just

been released in [1]1. This dataset has two classes( total of

10,000 images). For the sake of comparison, we adopt the

same evaluation metric in [1] which is the normalized accu-

racy, defined as follows

̺ = max(
ρ− 0.5

1− 0.5
, 0),

where ̺ and ρ denote the normalized and regular accuracies

respectively.

Following the experimental setting in [1], we randomly

select 80% images from each class as training and learning

dataset and the remain 20% images are used for testing. We

create five random training-test splits by the same percentage

and we report the mean of the normalized accuracies over the

five splits. For Weather-CNN, we further randomly divide

training part for each split into two subsets. The first subset

(85% of the training) is used for optimizing/fitting Weather-

CNN model and the second subset (15% of the training set)

is used for validation. In order to distinguish the CNN model

pre-trained by ImageNet, we name our weather classification

oriented CNN model as Weather-CNN and name the Ima-

geNet pre-trained CNN as ImageNet-CNN.

3.2. CNN Models Layer Analysis

We conduct several experiments to perform layer by layer

analysis of Weather-CNN model and ImageNet-CNN model

on the weather classification task. Figure 2 plots the results

and Figure 3 shows the relative improvement of Weather-

CNN over ImageNet-CNN in each layer1. It is not hard to

see that the Weather-CNN features consistently outperforms

1http://www.cse.cuhk.edu.hk/ leojia/projects/weatherclassify/index.htm
1SVM is the classifier adopted in all experiments except the last layer of

the Weather-CNN model, since the output of this layer is exactly the pre-

dicted label
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Fig. 2: The normalized accuracies ̺ of the layers from the Weather-

CNN and the ImageNet-CNN.

pool1 pool2 conv3 conv4 conv5 pool5 fc6 fc7
0

5

10

15

20

25

30

35

CNN Layers

R
el

a
ti

ve
 I

m
p

ro
ve

m
en

t 
(%

)
 

 

Fig. 3: The relative improvement of Weather-CNN features over

ImageNet-CNN features by layer by layer (in normalized accuracy).

Note, the improvement of the last layer, which is the label layer, has

not been reported.

the ImageNet-CNN features in all the layers. This is since

ImageNet-CNN is trained to discriminate between objects

rather than discriminating between weather conditions which

is captured by Weather-CNN model. Another interesting

observation is that the improvement of the Weather-CNN

over ImageNet-CNNs significantly increases in high level

layers. This is since ImageNet-CNN performance decreases

while going up to higher CNN layers. On the other hand,

the performance of Weather-CNN goes up in higher layers.

We attribute this behavior to following reasons: low-level

layers are good at depicting the detailed local characteris-

tics, such as edge, corner point and primitive shape patterns,

which are shared by most of the images, while the higher

level layers pay more attentions on capturing the abstract

and task-specific information, such as object parts, and ob-

jects for ImageNet-CNN. Since Weather-CNN is trained for

weather classification, this justifies the big gap in the perfor-

mance between it and ImageNet-CNN in higher levels since

Weather-CNN learns weather-related high level information.

3.3. Spatial Analysis of ImageNet CNN Layers

In this experiment, we study the effect of spatial distortion

of the images on ImageNet-CNN. The reason why we study

ImageNet-CNN is that the experiments in the previous sec-

tion shows a clear correlation between the level of the layer
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Fig. 4: ImageNet-CNN ̺ Performance on scrambled Datasets

and the performance, where the best performing layer is Pool1

and the performance decreases in the higher layers. One pos-

sible reason why Pool1 performs the best for ImageNet CNN

is that Pool1 has the most spatial information among all the

layers. In order to understand the role of spatial arrangement

on weather classification, we spatially scramble all the im-

ages in the dataset in 3× 4, 9× 12, 27× 36 grids, and totally

scrambled (at pixel level). We scramble an image by divid-

ing it into m × n equal-size rectangular blocks (i.e., m rows

and n columns) and then randomly shuffling them. While, it

is obvious that the spatial structure is significantly distorted

for big m and n, spatial coherence is preserved within each

block when m and n are smaller (e.g., when m,n = 1, scram-

bling has no effect on the image). Then, we evaluated the per-

formance layer by layer of ImageNet-CNN for each of these

scrambling settings and also the unscrambled setting.

Figure 4 shows ̺ performance layer by layer for the un-

scrambled, 3 × 4, 9 × 12, 27 × 36, and totally scrambled

versions of the dataset. The results shows a drop of Pool1 fea-

tures from 77.02% (unscrambled) to 63.48% (totally scram-

bled). This behavior is consistent until FC6, where the perfor-

mance starts to get unstable with high variance and gets more

similar. This is since FC6 contains high level cues which

might be equally effective as cues trained for object recog-

nition rather than weather classification. Our conclusion for

these experiments is two-fold. First, spatial distortion of the

images highly degrades the performance in the lower layers

(e.g., Pool1) compared to higher layers (e.g., FC6). Second,

even with high spatial distortion, the Image-Net CNN at lower

layers (e..g, Pool1) still performs well at the rate 63.48%,

which indicates that the low-level cues are still good to dis-

criminate between the two weather classes (63.48% is ≈ 10%

better state-of-the-art performance, discussed next).

3.4. Comparison with Engineered Representations and

the State of The Art

We start by comparing the CNN features with engineered fea-

tures including the combined feature in [1], and two other en-

gineered features, namely HOG [10], GIST [11]. For classifi-

cation, linear SVM is applied for all the engineered features;

see table 1 top 3 rows. The results shows a big gap between

these engineered features (top 3 rows in table 1) compared to

Table 1: The performances (mean±std, in percents) of different

weather image representations where NormAcc = Normalized Ac-

curacy and Acc = Regular Accuracy.

Methods NormAcc (̺) Acc (ρ)

GIST [11]+SVM 11.3±2.0 55.7±1.0

HOG [10]+SVM 38.5±2.4 69.3±1.2

Combined Feature [1]+SVM2 41.2±2.2 70.6±1.1

Yan et al. [3]2 24.6±2.6 62.3±1.3

Roser et al. [2]2 26.2±2.3 63.1±1.2

Lu et al. [1]2 53.1±2.2 76.6±1.1

ImageNet-CNN(Pool1)+SVM 77.0±2.3 88.5±1.2

Weather-CNN(FC7)+SVM 80.0±2.9 90.0±1.5

Weather-CNN (Output) 82.2±3.5 91.1±1.8

CNN approaches (bottom 3 rows). We argue that there are

two main cues behind the remarkable success of CNN-based

weather classification in contrast to engineered learning rep-

resentation. The first one is that CNN is a powerful Neural

Network model which is good at finding the nonlinear map-

ping. The second one is that CNN is pretrained on one million

images (using ImageNet data) which takes extensive factors

into the consideration including low-level abstraction.

We also compare Weather-CNN with ImageNet-CNN and

other state-of-the-art weather classification approaches; see

table 1 (bottom six rows). It is not hard to see that all the

CNN-based approaches significantly outperform the conven-

tional state-of-the-art methods. The normalized accuracy gain

of ImageNet-CNN over Lu’s work [1] is 23.9%, which is the

most recent and the best performing weather classification

approach. Note, in the experiment of ImageNet-CNN, the

most discriminative layer is selected as the image represen-

tation (i.e., Pool1; see section 3.2 for the discussion of layer

activation) and the linear SVM is employed for classification.

Similarly, Weather-CNN achieves 3% gain in normalized

accuracy over ImageNet-CNN by applying SVM on FC7.

The last layer of Weather-CNN has two-dimensional output

layer (FC8), which directly outcomes the predicted weather

label of an input image. Directly from output (FC8) layer,

the Weather-CNN achieves normalized accuracy of 82.2%

(91.1% in regular classification accuracy), which is 5.2%

better than ImageNet-CNN (77.0%). Furthermore, this con-

cludes that the relative improvement of the Weather-CNN

approach over the best performing state-of-the-art method [1]

is 54.8%. We think that the good performance of the CNNs

emerges mainly from its impressive abilities to capture the

non-linearities of the manifold of weather conditions.

4. CONCLUSION

In this work, we analyzed the recognition performance for

the layers of both pretrained imageNet-CNN and Weather-

trained CNN. We also studied the performance drop under

spatial distortion for the layers. We concluded our work by

Weather classification results outperforming the state-of-the-

art by a huge margin (82.2% compared with 53.1%).

2The results are referenced from [1] under the same experiment settings.
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