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ABSTRACT

As a considerable technique in image processing and com-
puter vision, Nonnegative Matrix Factorization (NMF) gen-
erates its bases by iteratively multiplicative update with two
initial random nonnegative matrices W and H , that leads to
the randomness of the bases selection. For this reason, the
potentials of NMF algorithms are not completely exploited.
To address this issue, we present a novel framework which
uses the feature selection techniques to evaluate and rank the
bases of the NMF algorithms to enhance the NMF algorithms.
We adopted the well known Fisher criterion and Least Recon-
struction Error criterion, which is proposed by us, as two in-
stances to show how that works successfully under our frame-
work. Moreover, in order to avoid the hard combinatorial op-
timization issue in ranking procedure, a de-correlation con-
straint can be optionally imposed to the NMF algorithms for
giving a better approximation to the global optimum of the
NMF projections. We evaluate our works in face recogni-
tion, object recognition and image reconstruction on ORL and
ETH-80 databases and the results demonstrate the enhance-
ment of the state-of-the-art NMF under our framework.

Index Terms— Nonnegative Matrix Factorization, Fisher
Score, Object Recognition, Face Recognition, Image Recon-
struction

1. INTRODUCTION

Non-negative Matrix Factorization (NMF) [1, 2] is a classical
linear multivariate analysis technique, and has been shown re-
cently to be useful for many applications in computer vision,
pattern recognition, multimedia and image processing. In
contrast with other multivariate analysis techniques, its main
advantage is that it can provide an intuitive visual interpreta-
tion of each basis, since the linear combination of the basis
can be only additive. Various impressive NMF algorithms
have been proposed for addressing different issues in recent
years, e.g. [3, 4, 5, 6, 7, 8]. A comprehensive survey of NMF
algorithms is recently presented in [9].

This work has been supported by the Fundamental Research Funds for
the Central Universities (No. CDJXS11181162 and CDJZR12098801)

Fig. 1. The overview of the framework.

Although the NMF algorithms have obtained many re-
markable successes, their potentials are not completely ex-
ploited, since the NMF algorithms are solved by iterative mul-
tiplicative update with two initial random nonnegative matri-
ces W and H , in which the bases are randomly ranked. How-
ever, researchers always choose the first (or the last) n bases
to yield the final projections in particular applications. Thus,
the selected n NMF projections are ususally not correspond-
ing to the n best bases.

Generally speaking, there are two ways for addressing this
problem. The first solution is to use other optimization tools
to replace the iterative multiplicative update for factorizing
the non-negative matrix, e.g. [10, 11]. The second solution
is to utilize some statistical analysis techniques to estimate
an optimal initialization of factor matrices H and W [12].
However, both of these two approaches cannot guarantee the
global optimum and are computationally complex.

In this paper, we present a framework to generally and
systematically improve the performances of NMF algorithms
by ranking their bases inspired by the existing feature selec-
tion techniques. To the best of our knowledge, there are no
prior work that suggested this solution. So we actually open a
new path towards the solution of this problem. The proposed
method is general and applicable to all available NMF algo-
rithms, and does no conflict with the previous two strategies,



which means it can be readily combined with them.
The rest of paper is organized as follows: Section 2

presents the involved NMF algorithms; Section 3 describes
our methodology. Experiments are presented in Section 4,
and conclusion is summarized in Section 5.

2. INVOLVED NMF ALGORITHMS

This section summarize two NMF algorithms that are the tar-
gets for our improvement. Let a set of n training images be
given as l × n matrix X = [x1, · · · , xn] where xi is the ith
column of matrix X and denotes the ith vectorized training
image. A l ×m matrix W = [w1, · · · , wm] denotes a set of
m ≤ l basis vectors and its corresponding coefficients (load-
ings) are denoted as a m×n matrix H = [h1, · · · , hn] where
xi ≈ Whi. Hence, the training image matrix can be approx-
imately factorized as X ≈ WH , which represents the image
reconstruction process using the bases and loadings. Its re-
verse process can be done as hi =W−xi.

2.1. Non-negative Matrix Factorization
Non-negative Matrix Factorization (NMF) [1, 2] imposes the
non-negativity constraints, W,H ≥ 0, to ensure that all en-
tries of W and H are non-negative. Consequently, NMF
only allows non-subtractive combinations. There are two cost
functions that can be defined to find an approximate factor-
ization X ≈ WH . The first is based on the Euclidean dis-
tance and the second is based on divergence. In this paper, we
only introduce the Euclidean distance based version and the
divergence based version can be referenced from their origi-
nal papers. So, the NMF problem can be finally formulated
as a following optimization problem:

Ŵ = argmin
W,H
||X −WH||2, s.t W,H ≥ 0 (1)

It can be solved by using multiplicative update rules. Further-
more, an optional constraint

∑
i wij = 1 is always imposed

for stabilizing the computation.

2.2. Graph Regularized NMF
Graph Regularized Non-negative Matrix Factorization (GRNMF)
[3] imposes an additional graph regularizer, which encodes
the local manifold structures information, to the standard
NMF. GRNMF constructs an affinity weight matrix Q to
weight the Euclidean distance of each two represented sam-
ples, and such regularizer is denoted as follows

R =
1

2

n∑
i,j=1

||hi − hj ||2Qij (2)

= Tr(HDHT )− Tr(HQHT ) = Tr(HLHT ),

where Qij , which is the i, jth entry of matrix Q, denotes the
weight of the distance between the ith and the jth samples,
Tr(·) denotes the trace of a matrix and matrixD is a diagonal

matrix whose entries are column (or row, since Q is symmet-
ric) sums of W , Dii =

∑
j Qij , L = D −Q, which is called

graph Laplacian. By minimizing R, the projections can en-
sure that if samples xi and xj are close then their projected
samples hi and hj are close as well. Combining this regu-
larizer with the original NMF objective function leads to the
object function of GRNMF:

Ŵ = argmin
W,H
||X −WH||2 + λTr(HLHT ), s.t. W,H ≥ 0

where the regularization parameter λ > 0 controls the
smoothness of the local manifold structures preservation.

3. METHODOLOGY

The idea of our framework is very simple. To a specific task,
we evaluate each basis and generate a score which can indi-
cate its related ability. After that, we rank the bases based on
the scores. In such case, there should be two basic steps in
our framework. One is the basis evaluation and the other is
the bases ranking. However, in the most of time, the bases of
the NMF algorithms exist the correlation. In other words, the
combination of the top n bases may be not the real optimal
NMF projections. Searching such global optimum is a typi-
cal combinatorial optimization problem. Actually, the global
optimum indeed can be achieved by a exhaustive enumera-
tion method. But, it is very time consuming. Instead of it, we
approximate the global optimum via de-correlating the bases.
An important reason why we can adopt this way is due to the
fact that the local representation requires the parts (the bases)
to be distinct from each other [4, 5, 13]. In other words, the
NMF bases should be naturally independent with each other.
Thus, a bases de-correlation procedure can be optionally ap-
plied before the basis evaluation and the bases ranking to op-
timize the framework.

3.1. Bases De-correlation
By introducing the Lagrangian multiplier, an additional un-
correlated constraint is imposed to the NMF algorithms for
de-correlating the bases. This step is an optional step, since
this step will modify the algorithm itself. For example, if we
need to keep the original structures of the bases, such step can
be ignored.

To achieve de-correlation, each two bases should meet the
following conditions: wT

i wj = 0 when i 6= j and wT
i wi = p

where p denotes a positive number. However, typically, the
bases are normalized to 1, so p is set to 1. Thus, the uncor-
related constraint is equivalent to an orthogonality constraint.
We can integrate all the bases together to get a final holis-
tic uncorrelated constraint: WTW = I where matrix I is an
identity matrix.

According to the above analysis, the objective functions
of Uncorrelated Non-negative Matrix Factorization (UNMF)
and Uncorrelated Graph Regularized Non-negative Matrix



Factorization (UGRNMF) are respectively written as

J1 = ||X −WH||2 + γ||I −WTW ||2, (3)
s.t. W,H ≥ 0

J2 = J1 + λTr(HLHT ), s.t. W,H ≥ 0 (4)

where parameter γ ≥ 0 controls the de-correlation of the
bases. Let θ and φ be the Lagrange multipliers for constraints
Wij ≥ 0 and Hij ≥ 0 respectively.

Following the solution procedure of NMF and GRNMF,
the update rules of UNMF and UGRNMF can be obtained
via using Karush-Kuhn-Tucker conditions. The multiplicative
update rules of UNMF with respect to W and H are

wik ← wik
(XHT + 2γW )ik

(WHHT + 2γWWTW )ik
(5)

hjk ← hjk
(WTX)jk

(WTWH)jk
(6)

and the multiplicative update rules of UGRNMF as follows

wik ← wik
(XHT + 2γW )ik

(WHHT + 2γWWTW )ik
(7)

hjk ← hjk
(WTX + λHW )jk
(WTWH + λHD)jk

(8)

3.2. Basis Evaluation
Basis evaluation is the core of our method and determines
the measure of how well a problem can be solved. In this
step, the original training data is used as prior knowledge for
evaluation. In this section, the classification issue and recon-
struction issue is taken as two instances to specify how our
framework works. Bases ranking can be seen as a selection
step that aims to select meaningful bases, which can bene-
fit the solution of the given task. This is very close to the
feature selection task. So we can seek the solution of basis
evaluation from the studies of feature selection. In this paper,
we adopt the well known feature selection technique, Fisher
Score (Fisher Criterion), to evaluate the discriminant ability
of basis and propose the Least Reconstruction Error (LRE)
Criterion to evaluate the reconstruction ability of basis.

3.2.1. Fisher Criterion
Fisher criterion [14, 15, 16, 17] measures the scattering of
classes by calculating the ratio of the trace of the between-
class scatter matrix to the trace of the within-class scatter
matrix along the direction of basis. Since the projection is
known and the samples projected by each basis are all scalars,
the between-class scatter matrix and the within-class scat-
ter matrix are exactly the variance of the means of different
classes and the sum of the variances of the homogenous sam-
ples respectively. Consequently, the Fisher criterion evaluat-
ing function for basis w can be written as

F(w) =

∑
c∈C

nc · σ(wTXc)

σ(wTM)
(9)

where σ(x) is the variance of x, Xc denotes the matrix con-
structed by the samples belonging to the class c and nc indi-
cates its sample number. M is the matrix whose ith column
is the mean of the samples belonging class i.

Finally, we can grade each basis with a score, which in-
dicates its discrimination ability. For example, smaller score
indicates stronger discrimination ability.
3.2.2. Least Reconstruction Error Criterion
For a reconstruction task, we measure the reconstruction abil-
ity of basis by simply computing its reconstruction error to
the training data. And we name this evaluation criterion Least
Reconstruction Error Criterion (LRE). The basic procedure is
to use a learned NMF basis w and its corresponding learned
coefficient h to reconstruct the data and then measure the Eu-
clidean distance between training data and the reconstructed
data directly for getting the reconstruction error. The recon-
struction error computing function is presented as follows:

L(w) = ||X − wh||2 (10)

where h is a row of matrix H corresponding to w of matrix
W . A smaller reconstruction error means the basis has a bet-
ter reconstruction ability and carries more important informa-
tion along its direction.
3.3. Re-ranking Bases By Evaluation Results
After basis evaluation, each basis gets a score and then we can
re-rank the bases. We select the m top ranked bases to yield
the final projections. The detail of basis ranking is described
in Algorithm 1.

Algorithm 1 Re-ranking the Bases
Require:

The training data X;
The sample class labels L;
The original l × n NMF projections W = [w1, · · · , wn];

Ensure:
The output re-ranked l × n projections Wr ;

1: Define a temporary array F to store the evaluation scores.
2: for each i ∈ [1, n] do
3: Calculate the evaluation score f of the ith basis by Equation 9 or

Equation 10 (different evaluations are suitable to different issues) with
parameters of wi, X and L;

4: Put the evaluation score f into the ith entry of array F ;
5: end for
6: Ascendingly sort the evaluation score array F , [F, index] =

SORT (F ) where index indicates the new index of array after the sort-
ing;

7: Re-rank the bases W basing on index, Wr = W (index);
8: return Wr ;

4. EXPERIMENTS

This section presents several results that shows the potential
of our framework. ORL face database and ETH-80 Object
database are employed for face recognition, object recogni-
tion and Image reconstruction. Nonnegative Matrix Factor-
ization [2] and Graph Regularized Non-negative Matrix Fac-
torization (GRNMF) [3], are selected as the target methods
for improving.



4.1. Face Recognition using ORL Database
The ORL database contains 400 images from 40 subjects [18].
Each subject has ten images acquired at different times. We
resize each face image to 32×32 pixels to the face recognition
issue while keep the original size to the image reconstruction
task. We apply the five-fold, three-fold and two-fold cross-
validations to evaluate the recognition performances of the
NMF algorithms. Fisher Criterion is adopted for basis evalu-
ation. The initial dimension of NMF projections is fixed to the
number of testing samples and we construct the Graph Lapla-
cian of GRNMF in a supervised way that only puts the edge
between two homogenous samples. The parameter γ, which
is used to control the de-correlations of the bases, is empiri-
cally assigned as 1 and 0.1 to NMF and GRNMF respectively.

Methods Schemes-Recognition Accuracy (ARA±STD)
Five-fold Three-fold Two-fold

NMF 88.25±4.11 87.50±5.83 81.25±1.06
Re-ranked 90.00±3.54 89.44±5.55 82.75±1.96

De-correlated 91.75±3.78 90.56±1.73 82.75±1.96
Combined 93.00±3.78 91.39±2.68 84.25±1.77

Improvement 4.75 3.89 3.00
GRNMF 81.25±4.15 80.28±2.10 76.00±0.71

Re-ranked 85.50±3.38 81.39±1.27 78.00±0.71
De-correlated 92.50±3.19 90.56±5.02 84.50±1.41

Combined 94.50±2.74 91.94±3.76 86.75±0.35
Improvement 13.25 11.66 10.75

Table 1. Recognition performance (%) on ORL database

4.2. Object Recognition using ETH-80 Database
The ETH-80 object database contains 80 objects from 8 cat-
egories [19]. Each object is represented by 41 views spaced
evenly over the upper viewing hemisphere. The original
size of each image is 128×128 pixels. We resize them to
32×32 pixels. The experiments on ETH-80 Database fol-
low the same experimental setting on ORL database. The
ten-fold, Five-fold and two-fold cross-validation schemes are
employed to evaluate the recognition performance.

Methods Schemes-Classification Accuracy (ARA±STD)
Ten-fold Five-fold Two-fold

NMF 29.63±3.13 27.80±4.42 28.17±2.16
Ranked 31.49±3.13 28.29±5.00 29.21±1.12

De-correlated 52.44±5.64 53.35±4.84 62.50±1.64
Combined 72.38±6.39 71.95±5.78 73.81±3.92

Improvement 42.77 44.15 45.64
GRNMF 56.65±8.08 54.48±5.81 55.64±1.68
Ranked 57.29±9.01 54.15±4.00 56.28±1.47

De-correlated 65.49±8.98 63.87±5.65 61.77±2.59
Combined 66.19±8.69 64.36±6.22 62.31±2.37

Improvement 9.54 9.88 6.67

Table 2. Classification performance (%) on ETH-80 database

4.3. Image Reconstruction using ORL Database
The image reconstruction experiments are all based on the
Least Reconstruction Error criterion. Figure 2 depicts the re-
lation between the error and the retained dimension of the
NMF algorithms, before and after ranking. It is clear that the
ranked NMF algorithms obtain smaller reconstruction errors.
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Fig. 2. The reconstruction errors of NMF algorithms and its
ranked version on ORL database, (a) the reconstruction er-
rors of NMF and ranked NMF, (b) the reconstruction errors
of GRNMF and ranked GRNMF.

4.4. Discussion
The following conclusions can be made from the experimen-
tal results listed in Tables 1 and 2:

1. The results show that each of the de-correlation and the
ranking steps improves the results of each of the base-
line algorithms. The results also show that combining
the the two steps further improves the results as ex-
pected (combined improvement shown in bold). The
improvement is consistent in all cases, and significant
in most of the cases. For example, the combined im-
provement over the NMF algorithm is more than 40%
ETH-80 database.

2. There exist a large different between the different
improvements of different algorithms using different
database. We think the large different in improvement
is due to the fact that the performance of the baseline
algorithms relies on the random initialization, which
accidentally can get good initialization, and hence the
room of improvement is limited.

5. CONCLUSION

We present a new framework for further exploiting the poten-
tial of the NMF algorithms. It utilizes the feature selection
techniques to evaluate and rank the bases, which is gener-
alizable for all NMF algorithm . In order to show how our
framework works, the well known Fisher criterion and a pro-
posed criterion named Lowest Reconstruction Error criterion
are adopted to respectively enhance the discrimination and re-
construction abilities. Since the bases may exist correlation,
the global optimal NMF projections searching is a hard com-
binatorial optimization issue. In order to avoid this, a bases
de-correlation step is optionally add. We apply our frame-
work to NMF and GRNMF for addressing the face recogni-
tion, object recognition and image reconstruction tasks. The
results of experiments demonstrate its effectiveness.
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