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Abstract
In the Object Recognition task, there exists a di-
chotomy between the categorization of objects
and estimating object pose, where the former ne-
cessitates a view-invariant representation, while
the latter requires a representation capable of
capturing pose information over different cate-
gories of objects. With the rise of deep archi-
tectures, the prime focus has been on object cat-
egory recognition. Deep learning methods have
achieved wide success in this task. In contrast,
object pose estimation using these approaches
has received relatively less attention. In this
work, we study how Convolutional Neural Net-
works (CNN) architectures can be adapted to the
task of simultaneous object recognition and pose
estimation. We investigate and analyze the layers
of various CNN models and extensively compare
between them with the goal of discovering how
the layers of distributed representations within
CNNs represent object pose information and how
this contradicts with object category representa-
tions. We extensively experiment on two recent
large and challenging multi-view datasets and we
achieve better than the state-of-the-art.

1 Introduction
Impressive progress has been made over the last decade
towards solving the problems of object categorization, lo-
calization and detection. It is desirable for a vision sys-
tem to address two tasks under general object recogni-
tion: object categorization and object pose estimation (es-
timating the relative pose of an object with respect to
a camera). Pose estimation is crucial in many applica-
tions. These two broad tasks are contradicting in nature.
An optimal object categorization system should be able
to recognize the category of an object, independent of its
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viewpoint. This means that the system should be able
to learn viewpoint-invariant representations of object cat-
egories. In contrast, a pose estimation system requires a
representation that preserves the geometric and visual fea-
tures of objects in order to distinguish their pose. This
gives rise to a fundamental question: should categoriza-
tion and pose estimation be solved simultaneously, and if
so, can one aid the other? Contrasting paradigms approach
this question differently. Traditional instance-based 3D
pose estimation approaches solve the instance-recognition
and pose estimation problems simultaneously, given model
bases of instances in 2D or 3D (Grimson & Lozano-Perez,
1985; Lamdan & Wolfson, 1988; Lowe, 1987; Shimshoni
& Ponce, 1997). Most recent object pose estimation ap-
proaches solve the problem within the detection process,
where category-specific object detectors that encode part
geometry are trained (Savarese & Fei-Fei, 2007; Savarese
& Li, 2008; Mei et al., 2011; Payet & Todorovic, 2011;
Schels et al., 2012; Pepik et al., 2012). Since part-geometry
is a function of the pose, these approaches are able to pro-
vide coarse estimate of the object pose with the detection.
However the underlying assumption here is that the cate-
gorization is done a-priori, and the representation is view-
variant. Other recent approaches try to solve the pose esti-
mation simultaneously with categorization through learn-
ing dual representations: view-invariant category repre-
sentation and view-variant category-invariant representa-
tion (Zhang et al., 2013a; Bakry & Elgammal, 2014).

With the rise of deep architectures, the main focus has
been on category recognition. A wide success has been
achieved on this task. In contrast, pose estimation has
not received much attention. The impressive results of
Convolutional Neural Networks (CNNs) in tasks of cate-
gorizations (Krizhevsky et al., 2012) and detection (Ser-
manet et al., 2013; Girshick et al., 2013) motivated many
researchers to explore their applicability in different tasks.
Several approaches recently showed successful results
where they used networks that are pre-trained for a spe-
cific task (e.g. categorization) and then transfer the learnt
deep representations for other tasks (Frome et al., 2013;
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Donahue et al., 2013; Zeiler & Fergus, 2013). This process
is known as transfer learning. As pointed out by (Yosin-
ski et al., 2014), this process is useful when the target task
has significantly smaller training data than what is needed
to train the model. Typically the first n-layers are copied
from the pre-trained network to initialize the correspond-
ing layers for the target task. Within the CNN literature,
typically the layers up until FC7 (i.e., last layer before the
output layer) are used for that purpose (Frome et al., 2013).

Pose estimation is an example of a task that inherently suf-
fers from lack of data. In fact the largest available dataset
for multiview recognition and pose estimation has 51 ob-
ject categories with a total of about 300 instances (Lai
et al., 2011a). It is hard to imagine the availability of a
dataset of thousands of objects where different views are
sampled around each object in order to be able to train
a learning machine such as a CNN with millions of pa-
rameters. Therefore, transfer learning is critical for this
task. However the challenge lies in the contradicting ob-
jective that has been described in the first paragraph. Cur-
rent CNN models are optimized for categorization, and
therefore they are expected to achieve view invariant rep-
resentation. Therefore it is not expected that feature rep-
resentation at deeper layers are useful for pose estimation.
However, feature representation in shallower layers tend to
be more general and less category-specific and thus may
hold enough information to discriminate between different
poses. This is a key hypothesis that is explored in this pa-
per and this work is the first exploration of the capability of
CNNs on the task of object pose estimation.

The contributions of this paper are: (1) we show how CNNs
can be adapted to the task of simultaneous categorization
and pose estimation of objects, (2) we investigate how each
of these tasks affect the other, i.e.how category-specific in-
formation can help estimate the pose of an object and how
a balance between these contrasting tasks can be achieved,
(3) we analyze different CNN models and extensively com-
pare between them to find an efficient balance between ac-
curate categorization and robust pose estimation, (4) we
validate our work by extensive experiments on two recent
large and challenging multi-view datasets. We achieve bet-
ter than state-of-the-art performance on both datasets.

2 Related Work
Due to the surge of work in deep architectures over the last
few years, there has amassed a large number of research
studies. Despite this, using CNNs for regression and cap-
turing pose information is still a relatively unexplored area.
This motivates the goals of this paper.We focus on the most
relevant work, in particular, studies that focus on under-
standing the functions of CNN layers and CNNs that solve
for pose information. We also briefly touch upon previous
approaches in object categorization and pose estimation.

Although fundamentally different to object pose estima-
tion, some research has explored using CNNs to recognize
human pose (Toshev & Szegedy, 2013; LI et al., 2014; Pfis-
ter et al., 2014). Recently (Gkioxari et al., 2014) proposed
joint optimization on human pose and activity. In human
pose estimation, there is no problem getting millions of
image of people at different postures. Human activities
are correlated with human poses, while in the object-pose
domain the category is independent of pose. This makes
joint learning of category and pose more challenging than
joint learning of human activity and pose. Some very re-
cent work has explored joint detection and pose estimation
using CNNs (Tulsiani & Malik, 2014; Long et al., 2014;
Tulsiani et al., 2015; Carreira et al., 2015).

Recent in-depth studies explore the intricacies of CNNs;
including the effects of transfer-learning and fine-tuning,
properties and dimensions of CNN layers and the study of
invariances captured in CNN layers (e.g.(Yosinski et al.,
2014; Zeiler & Fergus, 2013; Chatfield et al., 2014)). A
data-centric analysis of existing CNN models for object de-
tection has appeared in (Pepik et al., 2015a).

A comprehensive review of recent work in object recogni-
tion and pose estimation is detailed in (Savarese & Fei-fei,
2010). We highlight the most relevant research. Successful
work have been done in estimating the object pose of a sin-
gle object (Cyr & Kimia, 2004; Mei et al., 2011; Schels
et al., 2012). This model, referred to as single-instance
3D model, has the limitation of being category-specific
and does not scalable to a large number of categories and
deal with high intra-class variation. Recently, detection and
pose have been solved simultaneously (e.g.(Tulsiani & Ma-
lik, 2014; Pepik et al., 2015b; Xiang et al., 2014; Savarese
& Fei-Fei, 2007; Savarese & Li, 2008; Mei et al., 2011;
Payet & Todorovic, 2011; Schels et al., 2012; Pepik et al.,
2012; Lai et al., 2011b)). Most of these methods belongs
to the category of limited-pose (discrete-pose) approaches
since it uses classification for pose estimation. Very few
works formulate the pose estimation problem as regression
over a continuous space. In (Lai et al., 2011b), an object
pose tree is built for doing multi-level inference. This in-
volves a classification strategy for pose which results in
coarse estimates and does not utilize information present
in the continuous distribution of descriptor spaces. Work
presented in (Zhang et al., 2013b) and (Torki & Elgam-
mal, 2011) explicitly model the continuous pose variations
of objects but the scalability of these models is limited.
A more recent work (Bakry & Elgammal, 2014) proposes
a feedforward approach to solve the two problems jointly
by balancing between continuous and discrete modeling of
pose in order to increase performance and scalability. In
these models, the nonlinearity in the representations are not
modeled, which is mandatory for many applications.
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3 Motivation
The first question we pose in this paper is how good are
pre-trained representations of different CNN layers, with-
out fine-tuning, for the task of pose estimation? To answer
this we analyzed a state-of-the-art CNN trained on Ima-
geNet (Krizhevsky et al., 2012) by testing it on dense multi-
view images from the RGBD dataset (Lai et al., 2011a)
to see how well it represented object view-manifolds and
hence able to estimate object poses. This CNN is com-
posed of 8 layers: Conv1, Pool1, Conv2, Pool2, Conv3,
Conv4, Conv5, Pool5, FC6, FC7, FC8. Pool indicates
Max-Pooling layers, Conv indicates convolutional layers
and FC indicates fully connected layers.

In order to quantitatively evaluate the representations of
pose within the CNN, we trained both a pose regressor (us-
ing Kernel Ridge-Regression) and an SVM classifier for
categorization (linear one-vs-all) on the features extracted
from each of the layers. Fig. 1-Left is the result of the re-
gressor and classifier. It clearly shows the conflict in repre-
sentation of the pre-trained network. For pose estimation,
the performance increases until around Pool5 and then de-
creases. This confirms that shallow layers that have suffi-
cient abstractive representation offer better feature encod-
ing for pose estimation. It appears that Pool5 provides a
representation that captures the best compromise in perfor-
mance, between categorization and pose discrimination.

In Fig 1-Left we report cross-evaluation of categorization
using pose features and vice versa. FC8 (output) which is
task specific, does not perform good pose estimation, while
FC6/FC7 perform much better. It is interesting to observe
the opposite is not true; when optimizing on pose, much of
the category-specific information is still represented by the
features of the CNN, as seen by the increase in performance
of category recognition using the pose-optimized features.

We further explored using other regressors on multiple
views of a single object instance (GPR (Rasmussen &
Williams, 2005), WKNN (H et al., 1996), SVR (H et al.,
1996), KTA (H et al., 1996)). We use a coffee mug in-
stance that has enough visual and shape features to dis-
criminate its poses. Fig 1-Right shows the MAE of the
pose regression. The results confirm that the pose repre-
sentation improves as we approach Pool5. This indicates
that Pool5 has the best representation of the object’s view-
manifold. We also found that the performance of features
based on Pool5 are the closest to correlate with the per-
formance when using HOG features on the objects’ multi-
view images (Fig 1-Right). This further proves that Pool5
has the abstraction capability to represent pose efficiently.
It is important to point out here that, in addition to our anal-
ysis, in-depth manifold analysis was conducted to analyze
the object-view manifolds and their representations within
CNN layers(Bakry et al., 2015). This in-depth study cor-
roborates the conclusions we make here.

Figure 1. Left: Linear SVM categorization and pose regression
performance based on feature encoding of different layers of a
pre-trained CNN over all objects. The dotted lines are for cross-
evaluation: for PM-Cat, LBM-Cat and EBM(800)-Cat represent
the models’ category representations evaluated on the task of pose
estimation (to observe the effect of how category representations
encode pose information). PM-Pose, LBM-Pose and EBM(800)-
Pose are evaluated on the task of categorization to see how well
pose representations in the CNN encodes categories. This is to
show the complete pose-invariant representations of the layers
when learning to categorize. Right: Pose regression on a single
object - showing the Mean Absolute Error (in degrees) of various
regression algorithms from FC8 to Pool5. The horizontal lines
represent the regression performance on HOG feature descriptors
computed on the images.

4 Analyzed Models
We used a state-of-the-art CNN built by (Krizhevsky et al.,
2012) as our baseline network in our experiments (win-
ner of the LSVRC-2012 Imagenet Challenge (Russakovsky
et al., 2014)). We refer to this model as Model0: base net-
work. This model is pre-trained on Imagenet. The last fully
connected layer (FC8) is fed to a 1000-way softmax which
produces a distribution over the category labels. Dropout
was employed during training and Rectified Linear Units
(ReLU) were used for faster training. Stochastic gradient
descent is used for back propagation. Model0 is not fine-
tuned, and thus an analysis of it shows how the layers of a
CNN trained on categorization of ImageNet lacks the abil-
ity to represent pose efficiently. Throughout this study we
vary the architecture of the base network and the loss func-
tions. All other models described are pre-trained on Ima-
geNet and fine-tuned on each of the two large dataset we
experimented on. The models could be downloaded via
https://goo.gl/5ao9CN

We propose and investigate four different CNN mod-
els: Parallel Model (PM), Cross-Product Model (CPM),
Late Branching Model (LBM) and Early Branching Model
(EBM). PM is a parallel version of the base network; two
parallel and independent versions of the base network, one
for categorization and one for pose. CPM has an output
layer with units for each category and pose combination to
jointly train (depicted in Figure 2-a). LBM and EBM mod-
els are also depicted in Figure 2. LBM branches into two
last layers, one for categorization and one for pose. LBM
is similar to the model proposed in (Gkioxari et al., 2014)
for a different problem (action detection and human pose

https://goo.gl/5ao9CN
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estimation). Finally, EBM performs early branching into
two subnetworks, each specialized in categorization and
pose estimation, respectively. The output layer FC8 is not
merged but instead the LBM and EBM networks are opti-
mized over two loss functions, one concerned with building
view-invariance representations for categorization and the
other with category-invariant representations for pose esti-
mation. Because of the branching, this causes two units to
be active, one in each branch, at the same time. All losses
are optimized by the multinomial logistic regression ob-
jective, similar to (Krizhevsky et al., 2012) (Softmax loss).
We denote softmax loss of label l ∈ {lc, lp} and image x as
lossi(x, l), where i indicates if this loss is over category or
pose modes, lp and lc are the labels for pose and category,
respectively. We now describe each model in detail.

Parallel Model (PM): This model consists of two base
networks running in parallel, each solving categorization
and pose estimation independently. There is no sharing of
information between the two networks. The goal of this
model is to see how well the traditional CNN is capable of
representing object-view manifolds and hence estimating
object pose, independent of category-specific information.
The category and pose losses minimized in this model are:
lossc(x, l

c) and lossp(x, lp), one for each of the tasks of
categorization and pose estimation, respectively.

Cross-Product Model (CPM): CPM explores a way to
combine categorization and pose estimation by building a
last layer capable of capturing both (see Fig2-a). We build
a layer with the number of units equivalent to the number of
combinations of category and pose, i.e.the cross-product of
category and pose labels. The number of categories varies
according to the dataset as we will see. The pose angles (in
this case yaw or azimuth angle of an object) is discretized
into angle bins across the viewing circle. This is the case
with all our pose estimating models. The loss function for
CPM is the softmax loss over the cross-product of category
and pose labels: loss(x, lp × lc).

Late Branching Model (LBM): We introduce a change in
the architecture by splitting/branching the network into two
last layers, each designed to be specific to the two tasks:
categorization and pose estimation. Thus, this network has
a shared representation for both category and pose infor-
mation up until layer FC7 (see Fig2-b).

The goal is to learn category and pose information simul-
taneously from the representations encoded in the previ-
ous layers of the CNN. The question behind this model is
whether one last layer would be enough to recover the pose
information from the previous layers, in other words un-
tangle the object view-manifold and give accurate pose es-
timates. In other words, one can think of this as testing the
ability of the deep distributed representations of a CNN in
holding both category-specific pose-invariant information

Figure 2. The studied models showing the joint loss layer in CPM,
late branching in LBM and early branching in EBM. Blue layers
correspond to layers with convolution, pooling and normalization.
Violet colored layers correspond to layers with just convolution.
Green layers correspond to fully-connected layers.

as well as pose-variant information. LBM is trained us-
ing a linear combination of losses over category and pose:
λ1 ·lossc(x, lc)+λ2 ·lossp(x, lp) where λ1, λ2 are weights
found empirically (see sec 7 in the supplementary).

Early Branching Model (EBM): The question of moving
the branching to an earlier layer in the network poses itself
here: Can the branching be moved earlier in the network
to where the pose knowledge is still well preserved and in
fact maximal across the layers?

From our experiments (described later on) we observe that
the objects’ view-manifolds are maximally represented at
Pool5. Thus, this network has a shared representation for
both category and pose information up until layer Pool5.
At Pool5 it branches out into two subnetworks, that are
jointly optimized using a combined loss function (same
as for LBM): λ1 · lossc(x, lc) + λ2 · lossp(x, lp). Simi-
lar to LBM, it is important to note that this network opti-
mizes over two losses. This model achieves the most ef-
ficient balance between categorization and pose estimation
and achieve state-of-the-art results on two large challeng-
ing datasets, as we shall see in Section 7.

5 Datasets
5.1 RGBD Dataset
One of the largest and challenging multi-view datasets
available is the RGB-D dataset (Lai et al., 2011a). It con-
sists of 300 tabletop object instances over 51 different cat-
egories. Images are captured of objects rotating on a turn-
table, resulting in dense views of each object. The camera
is positioned at three different heights with elevation an-
gles: 30◦, 45◦ and 60◦.

In previous approaches the middle height (45◦) is left out
for testing (Lai et al., 2011b; Zhang et al., 2013a; Bakry &
Elgammal, 2014; El-Gaaly et al., 2012). This means that
object instances at test time have been seen before from
other heights during training. For this dataset it was impor-
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tant to experiment with an additional training-testing split
of the data to give more meaningful results. We wanted to
ensure that objects at test time had never seen before. We
also wanted to make sure that the instances we are dealing
with have non-degenerate view manifolds. We observed
that many of the objects in the dataset are ill-posed, in the
sense that the poses of the object are not distinct. This
happens when the objects have no discriminating texture or
shape to be able to identify its poses (e.g. a texture-less ball
or orange). This causes object-view manifold degeneracy.
For this reason, we select 34 out of the 51 categories as ob-
jects that possess variation across the viewpoints, and thus
are not ill-posed with respect to pose estimation. We split
the data into training, validation and testing. In this dataset,
most categories have few instances; therefore we left out
two random instances per category, one for validation and
one for testing. In the case where a category has less than
5 instances, we form the validation set for that category by
randomly sampling one object instance from the training
set. We also left out all the middle height for testing. Thus,
the testing set is composed of unseen instances and unseen
heights and this allows us to more accurately evaluate the
capability of CNNs in discriminating categories and poses
of tabletop objects. We call this split, Split 1. In order to
compare with state-of-the-art we also used the split used by
previous approaches (we call this Split 2).

5.2 Pascal3D+ Dataset
We experiment on the recently released challenging dataset
of multi-view images, called Pascal3D+ (Xiang et al.,
2014). Pascal3D+ consists of images in the wild, in other
words, images of object categories exhibiting high vari-
ability, captured under uncontrolled settings, in cluttered
scenes and under many different poses. Pascal3D+ con-
tains 12 categories of rigid objects selected from the PAS-
CAL VOC 2012 dataset (Everingham et al., 2010). These
objects are annotated with pose information (azimuth, ele-
vation and distance to camera). Pascal3D+ also adds pose
annotated images of these 12 categories from the ImageNet
dataset (Russakovsky et al., 2014). The bottle category is
omitted in state-of-the-art results. To be consistent, we do
the same. This leaves 11 categories to experiment with.
There are about 11,500 and 7,000 training images in Ima-
geNet and Pascal3D+ subsets, respectively. We take a small
portion of these images for validation and use the rest for
training. For testing, there are about 11,200 and 6,900 test-
ing images for ImageNet and Pascal3D+, respectively. On
average there are about 3,000 object instances per category
in Pascal3D+ captured in the wild, making it a challenging
dataset for estimating object pose.

6 CNN Layer Analysis
Similar to the analysis performed in Section 3, we do the
same on all our described models. This gives insight into
the ability of these models to represent pose and the intrin-

sic differences between them. We perform kernel Ridge-
regression and SVM classification on each layer of the
CNN models. The results of this analysis on the two muti-
view datasets are shown in Fig. 3 and 4.

From Fig. 3 and 4, we can see that the base network mono-
tonically decreases in pose accuracy after layer Pool5.
Pool5 seems to again hold substantial pose information, be-
fore it is lost in the following layers. This is the premise
behind the design of our EBM model. EBM is able to effi-
ciently untangle the object-view manifold and achieve good
pose estimation on the branch specific to pose estimation.
From Fig. 3 and 4, LBM is able to achieve a good boost in
pose performance at its last layer. Fig. 3-right shows that
layers Conv4 and Pool5 EBM have slightly worse accuracy
than LBM and PM on the RGBD dataset. This indicates
that the optimization is putting emphasis on the category
information just before branching to achieve better pose es-
timation at deeper layers.

CPM does quite worse than the other models on both
datasets, in both categorization and pose estimation. This
can be seen in Fig. 3-Left and 3-Right and to some extent
in Fig. 4. The reason for this lies in the fact that CPM
shares information to jointly optimize over category and
pose. The drop is more evident in the task of categoriza-
tion, indicating again that category information aids in es-
timating the pose, but not the other way round. The drop

Figure 3. Analysis of layers trained on the RGBD dataset. Left:
the performance of linear SVM category classification over the
layers of different model. Right: the performance of pose regres-
sion over the layers of different models (including the category
parts of some of the models - this shows the lack of pose infor-
mation encoded within the object category representations)

Figure 4. Analysis of layers trained on the Pascal3D+ dataset.
Left: the performance of linear SVM category classification over
the layers of different model. Right: the performance of pose re-
gression over the layers of different models
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Figure 5. Comparison between the CNN models pose estima-
tion at each layer of the CNN using k-NN with varying k =
{1, 3, 5, 7, 9} (on the Pascal3D dataset )

is more on the RGBD dataset because there are a lot more
categories than Pascal3D+ and thus a lot more inter-class
confusion. This is analogous to using category labels to
separate between objects of different categories which may
help bring similar posed objects of the same category to-
gether in the latent space encoded in the layers. On the
other hand there is no clear untangling of the object-view
manifold, where the pose information is stored, and thus
this lack of pose information negatively impacts the cate-
gorization of objects.

k-NN Layer Analysis We conduct k−NearestNeighbor
pose estimation over the Pascal3D dataset on all the layers
of the 4 models with varying neighborhood sizes (shown
in Fig. 5). Comparing the two models (LBM and EBM),
we gain slight improvement in categorization and a large
improvement in pose estimation performance when using
EBM. From Fig. 5 ( and Fig. 1 in the supplementary mate-
rials), we conclude that as we go deeper into the network
- up to layer Conv5 - we gain more category separation
and object-view manifold preservation. This shows how
the early branching better resolves the contradiction be-
tween the pose estimation and categorization tasks while
sharing the low level filter representations that are helpful
for both tasks. After Conv5, there are two common layers
in EBM. In these two layers, linear separability between
categories increases (seen in Fig. 1 in the supplementary
materials), but the object-view manifolds collapse (as seen
in Fig. 5). This hurts the pose estimation. At the same
time, this supports the aforementioned claim that enforc-
ing better categorization (fine-tuning) hurts pose estima-
tion. In our best performing model (EBM), in Figure 5,
remarkable improvement to the pose object-view manifold
is attained. For pose, the drop in KNN-classifier as the K
increases vanishes when going deeper in network; see FC6
and FC7 layers EBM in Fig. 5. KNN figure for catego-
rization on Pascal3D dataset could be seen in the supple-
mentary materials (Fig. 1). In a similar behavior EBM
behaves better than CPM and PM. An interesting behavior
that CPM works clearly better on Pascal3D dataset com-
pared to RGBD; see Fig. 2 and Fig. 3 in the supplementary

materials (Sec. 2) for KNN analysis on RGBD dataset.
This is due that RGBD dataset has both dense poses and
also larger number of categories (5 times Pascal3D). This
increases the information/uncertainty to model that are be-
yond the capacity of CPM for RGBD dataset and generally
as the number of categories and poses increase.

Local Pose Measurement Analysis: In the supplemen-
tary materials (Sec2), we further performed pose analysis
for our models using four local pose analysis measurements
proposed in (Bakry et al., 2015) to analyze each layer of
the models. The purpose of this analysis is to show how
the learning representations for each model is untangle to
the circle manifold where the pose inhabits. The main con-
clusion that it shows the advantage of how EBM untangle
the pose manifold locally compared to other CNN models.

7 Experiments
Here we describe the experimental setup and present the
quantitative results of our experiments as well as compar-
isons with state-of-the-art.

7.1 Training and Testing
All classification losses are optimized by the multinomial
logistic regression objective. Similar to (Krizhevsky et al.,
2012), we optimized it by maximizing the average of the
log-probability of the correct label under the prediction
distribution across training cases. The pose softmax out-
put (FC8) layer produces the pose probability distribution
given the image. For each of the category and pose losses,
the gradient with respect to the CNN parameters is com-
puted which is then fed into CNN training for back prop-
agation. More details about the training could be found in
the supplementary materials (Sec 5).

The results presented in the paper were based on the predic-
tion of argmaxposep(pose|x), where pose is one of the 16
pose bins and x is the given image. In addition, we conduct
an experiment where we predict the pose by computing the
expected pose in the distribution of p(pose|x); see Eq. 1.

E(pose|x) =
∑
i

p(posei|x)× φ(posei) (1)

where φ(posei) is the center angle of the corresponding bin
posei (the pose of the ith bin). The detailed definitions of
the performance metrics used in our experiments are de-
scribed in the supplementary (Sec 4).

7.2 Results
Table 1 shows the category recognition and pose estimation
performance for the different models on the two training-
testing splits of the RGBD dataset. Table 2 shows our best
performing model EBM compared to state-of-the-art ap-
proaches. Using the pose prediction rule of eq. 1, the pose
accuracy of EBM(800) increased from 78.83% to 79.30%
for the argmax prediction on split 2 of RGBD. Looking at
the closest previous approach in Table 2, (Bakry & Elgam-
mal, 2014) achieves 96.01% classification accuracy. This
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is achieved using both visual and depth channels. We only
used RGB (without depth) in our approach. (Bakry & El-
gammal, 2014) achieves a lower 94.84% with RGB only,
which shows the advantage of our CNN models for classi-
fication. We achieve 2.3% increase in category recognition
and about 2% increase in pose estimation (79.30%) using
EBM(800), when compared with state-of-the-art. These
measurements are likely to increase further when using
EBM(4096), as we see slight improvement of EBM(4096)
over EBM(800) in Table 2. It is also possible that running
k-NN on top of the layer features could improve perfor-
mance further. We achieved 97.14% categorization using
EBM. We also achieved 99.0% classification accuracy us-
ing Nearest Neighbor classification on the Pool5 layer of
EBM, showing that we learned better convolutional filters.

Table 3 shows the performance of our models on Pas-
cal3D+. We compare the accuracy achieved by our models
with state-of-the-art results by (Zhang et al., 2015; Xiang
et al., 2014; Pepik et al., 2015b; Tulsiani & Malik, 2014).
It must be noted here that we are solving slightly different
problems to some of these approaches. In (Xiang et al.,
2014), the authors solve detection and pose estimation, as-
suming correct detection. On the other hand (Zhang et al.,
2015) solve just pose estimation, assuming that the object
categories are known. (Pepik et al., 2015b; Tulsiani & Ma-
lik, 2014) solve joint detection and pose estimation. In our
case we are jointly solving both category recognition and
pose estimation, which can be considered a harder problem
than that of (Zhang et al., 2015) and (Xiang et al., 2014).
Our pose estimation performance is better than all these
previous approaches. For the sake of this comparison, we
computed the pose performance using the metrics applied
in (Zhang et al., 2015). These metrics are pose accuracy for
images with pose errors < 22.5◦ and < 45◦.

Table 3 shows both our categorization and pose estimation

Table 1. A summary of all the results of the CNN models. Split
2 is the traditional RGBD dataset split. Split 1 is the one we de-
scribe that better evaluates our experiments. Split 2 is the state-
of-the-art training-testing split. C indicates category performance
and P indicates pose accuracy (where it is measured using 3 differ-
ent metrics consistent with state-of-the-art. P (< 22.5◦) indicates
that the pose accuracy is measured for objects where the pose er-
ror was less than 22.5◦

Model Split C% P%
(< 22.5◦)

P% (< 45◦) P%
(AAAI)

PM 1 89.63 69.58 81.09 81.21
CPM 1 80.68 63.46 75.45 77.35
LBM 1 91.48 68.25 79.31 79.94
EBM (4096) 1 89.94 71.49 82.19 82.00
EBM (800) 1 89.84 71.29 82.29 81.91
EBM (400) 1 89.77 70.80 81.73 81.65
EBM (200) 1 90.11 67.70 79.43 79.77
EBM (100) 1 90.34 69.15 80.09 80.36
EBM (800) 2 97.14 66.13 77.02 78.83
EBM (4096) 2 97.07 65.82 76.51 78.66
SVM/Kernel Regression
Model 0 (best category -
FC6)

1 86.71 - - 64.39

Model 0 (best pose - Conv4) 1 58.64 - - 67.39
HOG 1 80.26 - - 27.95

Table 2. RGBD Dataset: Comparison with state-of-the-art ap-
proaches on category recognition and pose estimation (Ours use
only RGB channel).

Approach Category % Pose (AAAI) %
(Lai et al., 2011b) 94.30 (RGB + Depth) 53.50
(Bakry & Elgammal,
2014)

94.84 (RGB only)/96.01 (RGB+ Depth) 76.01

(Zhang et al., 2013a) 92.00 (RGB only)/93.10 (RGB +
Depth)

61.57

(Bakry et al., 2016) 85.00 77.31
Ours (EBM(800)) 97.14 79.30

Table 3. Pascal3D dataset (Xiang et al., 2014): Comparison with
state-of-the-art approaches on category recognition and pose es-
timation. The AAAI pose metric is the performance metric used
in(Zhang et al., 2015; Lai et al., 2011b; Zhang et al., 2013a).

Train: Pascal12, Test: Pascal12
Approach C P%

(<
22.5)

P%
(< 45)

P%
AAAI

(Xiang et al., 2014) (L) - 15.60 18.70 -
(Pepik et al., 2012) (L) - 17.30 21.50 -
(Pepik et al., 2015b) (L) - 18.60 27.60 -
(Tulsiani & Malik, 2014) (L) - 36.00 44.50 -
(Zhang et al., 2015) - 44.20 59.00 -
EBM (4096) 83.0 51.80 64.27 73.53
EBM (800) 83.10 51.37 64.20 73.26
LBM 82.69 48.38 60.11 70.88
CPM 76.35 49.39 61.90 71.80
PM 84.0 47.34 61.30 71.60

Train: Pascal12 + ImageNet, Test: Pascal12
EBM (800) 83.79 51.89 60.74 75.39

Train: Pascal12 + ImageNet, Test: Pascal12 + ImageNet
EBM (800) 92.83 67.26 75.11 83.27

results on Pascal3D compared against previous approaches.
The table indicates 13.69% improvement of our method
over (Zhang et al., 2015) (the best performing previous
approach) in pose < 22.5◦ metric and 4% improvement
in pose < 45◦, which are significant results. It is impor-
tant to note that comparing to (Xiang et al., 2014; Tulsiani
& Malik, 2014; Pepik et al., 2015b) (marked with (L)) is
slightly unfair because these works solve for detection and
pose simultaneously, while we do not solve detection.

We also show our performance when including ImageNet
images in the training set and also the test set - see Table 3
(rows 7-8). The results show the benefit of ImageNet train-
ing images which boosts pose performance to 76.9% (from
57.89%) and 88.26% (from 63.0%) for pose < 22.5◦ and
pose < 45◦, respectively. In Table 3, on the in the wild im-
ages of Pascal3D+, our EBM model achieves an impressive
increase of ∼8% and ∼5% over the state-of-the-art models
using the two pose accuracy metrics, respectively.

7.3 Computational Analysis and Convergence
We performed computational analysis on the convergence
of the models and show that EBM converges substantially
faster than all the other models. In Fig. 6 we show the con-
vergence rates of the proposed models. EBM here is the
larger EBM (4096) network. Despite having many more
parameters than most of the other models (about ∼112
million parameters compared to 60 million in the base
network), EBM converges substantially faster than all the
other models. This shows the ability of this particular net-
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Figure 6. Comparison of convergence between the models. On
the left is the category error and on the right is the pose error, on
the validation set, respectively for each model (a) to (d). The error
is computed per batch during each iteration. CPM shows the error
for the joint category and pose. It can be seen that EBM (4096)
converges much faster than the others which is another benefit of
early branching. This is despite have a lot more parameters than
the other models. This indicates that each of the subnetworks of
EBM are able to specialize in both categorization and pose es-
timation faster. Each iteration is computed on one batch of 100
training samples.

work to specialize faster in the two tasks. The shared first
five layers are able to build up the object-view manifolds,
preserve them and enhance them in the pose subnetwork of
the model, while the other subnetwork specializes in pose-
invariant category recognition.

8 Discussion
Analysis of the layers of all the CNN models is shown in
Fig. 3 to 5 here and ( Figs. 1 to 7 in the supplementary).
We further provide quantitative results over two challeng-
ing datasets and summarize them in Tables 1, 2 and 3.

We compare our models with multiple baselines in Table
1: Linear SVM and Kernel Ridge-Regression on HOG de-
scriptors (Dalal & Triggs, 2005) as well as on features ex-
tracted from the best performing layers of the base network
on each task. These baseline results were expected to be
quite lower than our models’ performance due to the lack
of fine-tuning in the base model and due to the sharing
of the network layers between the two tasks of category
recognition and pose estimation. Without fine-tuning the
base network does not represent the object-view manifold
well enough to estimate the pose efficiently. After fine-
tuning on each of the respective datasets, we were able to
achieve good category performance using the PM model.
The downside of this model is its inability to perform robust
pose estimation on the more challenging natural sparser-
views of Pascal3D+. This is evident in the results shown in
Table 3, where PM achieves less pose accuracy.

In Tables 1 and 3, we see that CPM does worse than the
other models in both datasets. This is more evident in
the task of categorization, e.g., a drop of ∼7% and 2%-
3% in category and pose accuracy on Pascal3D+, respec-
tively, and similarly∼10% and∼6% on the RGBD dataset.
This motivates the need for branching in the networks and
branching at the particular layer that better represents both
category and pose. Interestingly, we found that CPM per-
forms relatively better on Pascal3D+. We argue that the
reason is that object poses in natural images are dominated

by a smaller range of viewpoints and hence most of the
pose-bins have vanishing probability (easier to learn). In
addition, Pascal3D+ has a smaller number of categories.

LBM performs relatively well on RGBD, but not on Pas-
cal3D+. This can be attributed to the fact that RGBD has
many more categories and is composed of images of ob-
jects under controlled settings and not in-the-wild like in
Pascal3D+. The images in the RGBD dataset are captured
at dense views as the object rotates on a turn-table. This
is why the pose information is more prevalent in the last
layers. This is evident from the steep monotonically in-
creasing curve of LBM in Fig. 3-Left. This is not the case
in Pascal3D+ where the increase is more steady and in fact
there is a decrease after layer FC6 (see Fig. 4-Right).

The reason why EBM performs better than PM even though
its weights are randomly initialized is that PM’s FC6 and
FC7 layers in the pose-specific branch are initialized with
category-specific weights from pre-training. This adversely
affects pose estimation since it is a contradictory task
that requires view-variant representations and not view-
invariant representations like that required in categoriza-
tion. Therefore initializing FC6/FC7 by another network
trained for a different task is not likely to help. We show
that learning the convolutional filters jointly with categories
help make them discriminative for both tasks and thus
achieves a good accuracy on both tasks (see Fig. 3 to 5
and Tables 1, 2 and 3).

Comparing between EBM and LBM, we see that early
branching is able to achieve a good balance between cat-
egorization and pose estimation by sharing the representa-
tions up to where we found the layer representation still
capture pose information. We see this in Tables 1, 3 and
Fig. 1 to 5, where better pose accuracy and slightly better
categorization accuracy is achieved by EBM. We also see
that in Fig. 5 that the object view-manifold collapses in the
last two layers (one layer before LBM) and thus achieves
better pose discrimination than LBM. The slight effect of
decreasing the size of the layers in the pose subnetwork of
EBM can be observed from the results in Table 1 and 3.

9 Conclusion

This paper is an exploration of using CNNs for joint object
categorization and pose estimation. We present our analy-
sis and comparison of CNN models with the goal of effi-
ciently performing both both tasks simultaneously. Despite
the dichotomy in categorization and pose estimation, we
show how CNNs can be adapted to simultaneously solve
both tasks. We make key observations about the intrinsics
of CNNs in their ability to represent pose. We quantita-
tively analyze the models on two large challenging datasets
with extensive experiments and achieve better than state-
of-the-art accuracy on both datasets.
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