GPU-framework for Teamwork Activity Recognition

Mohamed H. Elhoseiny, H.M. Faheem, T.M. Nazmy, Erf8haaban
m.h.elhoseiny@cis.asu.edu,emfaheem@ieee.ortmnazmy@cis.asu.edu.ggman.shaaban@cis.asu.edu.eg
Faculty of Computer and Information Sciences, Ain Shams University
Abbassia, Cairo, Egypt.

ABSTRACT
Applications of image processing include Hyper-sgc
Real time processing for teamwork activity recoigmitis a image processing [1] where Javier Setoain et algmeed an
challenge due to complex computational models Hoilt investigation of multi-level parallel implementat® In
achieving high system accuracy. Hence, this papgygses Computer vision field Jean-Philippe et al preser@&UCV
a framework based on Graphical processing UnitdJ&GRo [2] as GPU implementation of popular OpenCV funetio
achieve speed-up in the performance of role basidty ~ This work has achieved slightly improvement of the
recognition of teamwork. The framework can be aggpin speedup in computer vision applications, however
various fields, especially athletic and militarypéipations. optimality is not ensured due to generality of thes
Furthermore, the framework can be customized for anfunctions. As a rule, special purpose GPU desigultein a
action recognition application. The paper presdmsstages big step in performance.
of the framework where GPUs is the key for perfanoea
improvement. The speedup is achieved in terms @éo/i Moreover, Peihua Li et al presented parallel immgatation
processing and Machine learning algorithms implelein of mean shift tracking [3] on GPU as 6 kernel functions.
on GPU. Video processing is supported as GPWhey make use of K-means clustering to partitioforco
implementation of Motion detection and segmentationspace into distribution of small pins; consequeitlykey
beside support of using OpenCV on GPU using GPUCVcomponents were mapped onto GPU with great speedup.
Machine learning is provided with implementation§ o
Support Vector Machine (SVM) which is mainly used i In the same way, a lot of research has been domards
object classification and feature discretizatiohjl&vHidden enhancing performance of detection, tracking and
Marcov Model (HMM) supports activity recognition gge segmentation phases. Furthermore, noticeable effast
in the framework. The system was tested against UCBeen exerted to achieve significant improvement in
dataset and speedup of 20x has been achieved odid\Viimplementation of machine learning algorithms agsult
9500GT graphics card (32 500MHZ processors). of its great contribution in various computer Vvisio
applications. In this direction, Chuan Lui presen®PU
Keywords— Computer Vision, Action Recognition, implementations of HMM [4], similarly Austin Carpem
GPU, Teamwork. presented GPU implementation of SVM by Austin
Carpenter [5].
1. INTRODUCTION
Currently, GPUs are widely deployed as a powerful
GPU has been the state-of-the-art technology usesblve resource to achieve intensive computing tasksgh bpeed.
performance problem due to its intensive computatio Since Action recognition systems requires huge
power, beside its low cost that leads simple pebkoncomputational power to fit in real-time. This paerilds a
computer to have the name of personal super compyte link between GPUs and team work activity recogmitio
attaching GPU chip. One of the main companies teptliis systems as a framework on which many real timeegyst
chip industry is NVidia. NVidia presents an architee can be implemented. This framework targets thekbger
known as CUDA provided with SDK that is accessitde of action recognition systems. Through the regtagfer, we
software developers through standard programmingill refer to the target users of the frameworldaselopers.
languages. In the same direction, OpenCL initiallyThis paper is organized as follows. Part Il presethte
developed by Apple Incorporation as standard fraorkw proposed framework. Part 1l shows High performance
for writing Kernels on heterogeneous platforms ¢stitey approaches in the framework. Part IV shows how the
of CPUs and GPUs. As a result, advances in GPUsimglu framework could be configured for any system. Pdrt
and development have been achieved and a lot df s presents experimental results that report the wmelie
been done to get GPU applied in many high perfooman speedup.
fields. Examples include Bioinformatics, Image pesing
and computer vision.

2. GPU TEAMWORK ACTIVITY RECOGNITION Next sections present the detailed implementatiorach
FRAMEWORK component in the framework that together comprithes
framework.

For building a channel between GPUs and activity
recognition systems, we investigated the majorriggles 2.1. Moving Motion Detection by sliding window
used in action recognition and computer vision hgvhe
objective of making this channel serving as generaian Yu et al [6] achieved significant acceleratammotion
framework on which many applications can be built.detection of moving framework based on GPU whicdte
Figurel presents the workflow of the proposed GPUo building background model and detecting motiegions
framework. The input is raw images captured of mgvi at 18fps 320x240 videos. The process of detectioGBU
camera, and the output is the recognized activitye was implemented as two steps, warping images and
colored modules are the ones with general GPWomputing the background model. The main objecies
implementation to be configured according to agtlian to minimize memory transferring between GPU and CPU
requirements. The non-colored modules (Agent osignt
feature extraction, Team oriented feature extragtiare Figure 2 illustrates how the structure stores frarog the
implemented by the developer according to the piglen window as 2D textures in GPU memory. Next, wrapping
application running under the framework. However tton- which is done on each frame of the window using GPU
colored modules are implemented by the develoger, t Next, output of wrapping is passed to GPU compoifent
framework provides the developer with GPUCV funetio collecting statistics from the correspondencesefwindow
which gives him support to achieve speedup withiméh which leads to background model.
effort. Furthermore, the framework accepts the bper
implementation either on GPU or CPU.

Load It-w/2 Load It to Load
Captured frames from Recognized Activity to GPU GPU It+W/2 to
moving c a)
| v v v
- l — Warp frame | Warn f | Warp frame |t
Role Assignment/ Roles TW activity p t- arp frame |t
Learning (I!D3) —> Recognition W2 to to reference wy/2 to reference
and Mapping / Learning (cuHMM) e (R frame frame
Moving Motion . r Sliding window
bobeton” | Asen el feaun.Team adrtl e 1
idi 1
By_slldlng { Discretization (cuSVM) |
window e e 1
(Qian Yu Agen$eatures TeamworIfeatures Collect statistics from all
[Agent oriented feature| [Team oriented featuré correspondences
extraction extraction +
Binary image
Copy frame buffer memory
Current objects|mapping to objects to GPU main memory
over framep with its da

Segmentation and| Figure 2: Quan Yu et al Motion detection on GPU.

chiects’ data | Object tracking (Peihua Li mean shift) |

(conenxég?ggocr:)mp. objects e}n‘§ its data (e.0. 2.2. Segmentation and objects’ data extraction.
type, location, centroicetc)
Separated Object classification (CuSVM, In this stage GPUconnected component is applied to
Objects codebooly segment objects in the scene (Figure 3). The speédu
gained by dividing image into N blocks then mergihg
Figure 1: Process flow of the GPU framework computations as detailed in [7]. But experimentsvsihat

. R the cost of this algorithm depends on the size and
As illustrated in Figurel, the framework spans siiges complexity of the labeled objects, so this techaiquay

required for any action recognition system with cspef inherently be not faster than the CPU classicalagsps

each component defined on the arrows. Besides t@ee : ; : :
. - . ' ential algorithm achieved b sing Intel OpenCV
framework has been built such that functionalityG®#UCV ve?sl:on I gon eV y using P

(i.e. GPU version of Intel OpenCV functions) [4] is
supported and integrated as an infrastructure ¢hat be
used by the developer.

2.5. Discretization (cuSVM)

After the detection and classification of objedt®e next is
to handle features into HMM for recognition of acts in
discrete form which is welcome by HMM because diter
HMM is more accurate than continuous HMM as known i
the literature, This phase encapsulate discretizaif agent
Figure 3: Segmentation and object extraction features (e.g. postures into a set of predefine ovelocity
as fast or slow,.., etc), and team oriented featueeg.
cohesion as separated or merged) as illustrategyime 5.0.

2.3. Object classification (cuSVM, codebook)

This stage of processing is responsible for cateigor

detected objects into classes. Speedup of thig stan be 4 Tned
achieved by multilevel implementation. For instance B Time2

Jianpeng Zhou et al presented codebook algorithm to) e ;
Cohesion wactor : [

classify humans [8], While Vili Kellokumpu et ale SVM
in [9] to classify human postures (Figure 4). Sdedmok
can be used to ensure filtering out non- humanatdhj¢hen fAA
human blobs is presented to SVM to classify human tal
postures. Consequently, GPU implementations of ethes

models are included as a basic part of the framiewor
Siepa mted

Figure 6: Discrete Team features

Tearn e bir

In this phase, the framework provides the developién
GPU implementation of SVM to discretize features.
Moreover, the developer can integrate his own diszar
into the framework.

(a) (b)

Figure 4: (a) Classification of object as a ball &mman 2.6. Role Assignment / Learning (C5.0/ID3) and
(b) Classification of different human postures. .
Mapping
2.4. Object tracking (Peihua Li) In this stage each agent in the team is assignaddte such

that learning phase is done in a consistent angraicway.

Role assignment and mapping is done using C5.0hnikic

based on ID3decision tree learning algorithm [10]. The

classification involves mapping the data structuhat

describes a decision forest to a 2D texture aiMayigation

through the forest for each point of the input datdone in
t parallel. Regarding training, the responses of ttaaing
data are computed to a set of candidate features, these
responses are scattered into a suitable histogEing wa
vertex shader.

In this component correspondence mapping of blabssa
frames are constructed. Peihua Li et al's workwWak based
on the idea of partitioning the color space of otgavhich
leads to a quite small number of histogram binsesgnting
color distribution. That histogram was the base ponent
of mean shift tracking algorithm. The speedup of objec
tracking in the framework is achieved by the GPU
implementation of that algorithm.

2.7. TW activity Recognition / Learning(cuHMM)

Activity Recognition is the last phase in the framoek that
has the function of either learning or recognitamtording

to the mode of the framework. The main Learning ehod
that has been used in action recognition with atgsaccess
is HMM. Three kernel GPU implementation functicene
provided: Forward, Viterbi and BalmWelch algorithms.
HMM supported in this phase is not restricted otdy
teamwork actions but can be generally used in mctio
Figure 5: Object tracking recognition phase of any application.

3. HIGH PERFORMANCE APPROACHES IN THE then adjusts the parameters of each componenfitliato
FRAMEWORK system requirements. The configuration parameteredch
phase are listed as follows.

Parallelism of processing for applications undere th

presented framework can be achieved using thewfsitp ~* Moving Motion Detection By sliding window: length
approaches: of sliding windows with 91 as the default lengthda

number of histogram pins [6].

1. Component wise parallelism on GPU in which the . . , .
. . o e Segmentation and objects’ data extraction: the rmrmb
processing logic of each colored component in Egjur of N partitions [7]

is distributed over GPU processing elements.
« Object classification: feature vector length, and
2. Sequential phases running on the framework can be number of classes [5].
pipelined (e.g. while detected objects of a frame a

segmented in segmentation phase, the motion process Mean Shift tracking: the number of clusters K as th
is performed in the next frame). tracking algorithm is based on K-means clusterBig [

3. Independent task parallelism which can be expldited (Fgl'?leeefszll‘?rllg]ir;ttl?::v;agﬁljn%tg)?il?rlrgt?enrﬂ;??fergg c;e
object classification and action recognition phases number of classes [10].
Object classification is a pure parallel task where
multiple objects can be classified simultaneousty. * TW activity Recognition (HMM): number of hidden
action recognition HMMs are built for each action states, feature vector size, blocks size and rumb

which can run in parallel actions. The default value of the block size i4]6

Methods above show how the parallelism is done.ceen
guestion appears. Is there another degree of fregdo 4.2. Environment setup (hardware configuration)
configuring the hardware to gain more performance

improvement? Our investigations led to two types o
variations on the hardware platform for acceletatin
framework task:

fAfter components’ configuration, the next is totalksthe
hardware components in hand. The minimum requirgéiisen
to have one node with one GPU card on which all

1. Multiple GPU tasks can be done by attaching moré;nogg?tulr”ed GPU components would run, the first apph

cards to the same PC if applicable (High speed bus
will be critical issue here). For more complex situation where environment caostai
grid of nodes with each node containing at leaSP&l card,
2. The framework can be installed over PCs connectedll types of parallelism approaches in part Il applicable.

by high speed LAN with each PC attached with one oPipelining and Independent task parallelism areieaell
more GPUs as known as GPUs-Grid. either within same machine with multiple GPUs oroas
high speed LAN. The two methods are detailed devial.

1. Multi-GPUs on a single machine: This is most
recommended for tasks that require processing
relatively large data to overcome communicationt cos
over intranet. This will be more suitable for pipéig

There are two types of configurations required fol the stages of the configured systems (e.g. detgctio

utilization of the GPU framework: one is softwamedahe tracking, segmentation, etc).
other is hardware.

4. CONFIGURING SYSTEMS RUNNING UNDER
THE FRAMEWORK

2. GPU Grid distributed over different machines: Tisis
recommended if a lot of learned data is stored over

4.1. Components’ configuration (software) network and hence features would have relatively
small size to broadcast over network then gain
In this stage, the developer makes selectionsagfest that recognition data. This would be suitable for

will be utilized during the processing of his targgstem, classification and recognition that use large data

learning (e.g. object classification, action redtign recorded against MNIST data set (LeCun et al., 1998
phases). NVIDIA GTX 260 GPU.

The key of successful configuration of the framewes ¢ 4 Object tracking
how to organize available resources to fit procepsi

requirements of the target system with optimal GPU . . L
utilization The optimum goal here is to configureet The expgrlm(;ntsf show a speedug in blob trackinghing
framework to minimize the processing time (denctedr) 3.36x using the famous CAVIAR data set on GeFoR@08

required for recognizing actions given by Equation GTS GPU.
T = X PTepu(i) + X PTgpu (j) + X CTgpu_cpu (k) + 5.5. Role Assignment / Learning (C5.0/ID3) and
> CTnode_node (1) D Mapping

WherePTcpu(i) is the processing time of task i on a CPU.q9gy speedup in argmax mode using object recogni®

PTgpu(j) is the processing time of task j on a GPU.5n appjication on GPU nVidia GeForce GTX 280 (240
CTgpu_cpu(k) is the communication time for task K giream pProcessors)

between a GPU and a CPWUTnode_node(l) is the

communication cost for task | between two nodesrigihg . » .
to the GPUs-Grid if applicable. 5.6. TW activity Recognition / Learning(cuHMM)

880x speedup of forward algorithm GPU implementatio
5. EXPERIMENTAL RESULTS while 180x is the speedup of Baumwelch algorithmUGP
This test was done on 512x512 (number of statesnmxoer
This section provides speedup results for eacth@fGPU of sequences) on NVIDIA G92 with 512MB RAM.
components comprising the framework. Besides,atiples
overall speedup of the framework in terms of a el

- 5.7. Evaluation of framework speedup
application.

To test the applicability of the framework, we stbel the
5.1. Moving Motion Detection by sliding window system in [11] which is “role based activity recdgm in
observations of embodied agent actions”.
GPU version using the adaptiveean as the background
model with 91 frame sliding window can run at arour8 The researchers in [11] used labeled data set, atiom
fps on 320x240 resolution videos. Thede approach can detection, segmentation and tracking are filtered i
run at 10 fps with the same setting. The GPU varsiothe =~ components’ selection step of the configuration.e Th
mean approach achieves around 12x speedup over igomponents’ configuration of that system is presgras
standard CPU counterpart. The GPU version ofrtiode follows.
approach achieves around 15x speedup.
» Discretization: in this component, the developer
uses custom thresholds to transfer features from

5.2. Segmentation and objects’ data extraction i)
continuous to discrete.

This part is not recommended to use due to its @&sion

is slower than CPU version. In case of image with Role Assignment and mapping (ID3 algorithm):

2048x2048 as dimensions on 9800GT, the speedup is TreeLeaf mode, single tree and 4 classes (4
0.769231x which means slowdown, however it coukliite different roles).

in speedup if GPU with higher capability is used. iBis

subject to use depending on HW and complexity piin + TW activity Recognition (HMM): number of
objects. hidden states is five, feature vector size is &nd

number of actions is six. .
5.3. Object classification and Discretization (CuSM))) o
This system was tested using UCF dataset on NVidia
9500GT graphics card (32 500MHZ processors) against
3.2GHZ dual core processor, and speedup of 20x was
gained. Gained speedup increases dramatically as
capabilities increases.

Achieved speedup in cuSVM reached about 35x famitrg
SVM, 84x for corresponding prediction. This speedvgs

6. CONCLUSION AND FUTURE WORK

We have presented a GPU framework for action reitiogn
that can be configured to any action recognitiosteaw,
furthermore key approaches for good utilization thé
framework have been presented. Experiments shows ho
the framework is configured in teamwork action igration
system with speedup of 20x achieved on NVidia 95D0G
graphics card.

Future work includes enrichment of each phase an th
framework with more GPU implementations of relevant
algorithms .Examples include GPU implementations of

» Patrticle filters for object tracking.

e Correleogram based segmentation algorithm to
resolve the problem of overlapping objects.

» Codebook based algorithm in object classification
phase.

Additionally a study can be build up on the framekvo
showing how it varies with different setups of GBuéds
with variation of number of nodes in the Grid anober of
GPU cards in each node. This study may lead tonzatio
configuration of any system according to the awdda
hardware.

7. REFERENCES

[1] Javier Setoain, Manuel Prieto,Christian Tenlladad,a Francisco
Tirado, “GPU for Parallel On-Board Hyperspectral ale
Processing”, Sage Publications,CA,USA, Novembei8200

[2] Jean-Philippe Farrugia, Patrick Horain, Erwan Guekex,and
Yannick Alusse, “GPUCV: A FRAMEWORK FOR IMAGE
PROCESSING ACCELERATION WITH GRAPHICS
PROCESSORS?”, Lyon University,2006.

[3] Peihua Li and Lijuan Xiao, “Mean Shift Parallel €king on GPU",
Springer-Verlag Berlin, Heidelberg,2009.

[4] Chuan Liu, “a CUDA Implementation of Hidden Markdwodel
Training and Classification” Johns Hopkins UniversMay 2009

[5] Austin Carpenter,”A CUDA IMPLEMENTATION OF SUPPORT
VECTOR CLASSIFICATION AND REGRESSION”,2009

[6] Qian Yu, and Gerard Medioni, “A GPU-based impleraéioh of
Motion Detection from a Moving Platform”, IEEE ,28 June 2008.

[7] Sean M. O'Connell , “A GPU Implementation of Corteec
Component Labeling ”, lllinois State Universityg@.

[8] Jianpeng Zhou and Jack Hoang , “Real Time Robusmatu
Detection and Tracking System” San Diego, USA ,BEEEF005.

[9] Vili Kellokumpu, Matti Pietikdinen, and Janne Heilidk “Human
Activity Recognition Using Sequences of Postureg”,dAPR, 2005.

[10] Toby Sharp, "Implementing Decision Trees and Farest a GPU”,
Springer ,2008.

[11] Linus J. Luotsinen and Ladislau Boéléni “Role-Bas€damwork

Activity Recognition inObservations of Embodied AgeActions”,
Richland, SC ,2008

