
GPU-framework for Teamwork Activity Recognition
Mohamed H. Elhoseiny, H.M. Faheem, T.M. Nazmy, Eman Shaaban

m.h.elhoseiny@cis.asu.edu.eg, hmfaheem@ieee.org, tmnazmy@cis.asu.edu.eg, eman.shaaban@cis.asu.edu.eg
Faculty of Computer and Information Sciences, Ain Shams University

Abbassia, Cairo, Egypt.

ABSTRACT

Real time processing for teamwork activity recognition is a
challenge due to complex computational models built for
achieving high system accuracy. Hence, this paper proposes
a framework based on Graphical processing Units (GPUs) to
achieve speed–up in the performance of role based activity
recognition of teamwork. The framework can be applied in
various fields, especially athletic and military applications.
Furthermore, the framework can be customized for any
action recognition application. The paper presents the stages
of the framework where GPUs is the key for performance
improvement. The speedup is achieved in terms of video
processing and Machine learning algorithms implemented
on GPU. Video processing is supported as GPU
implementation of Motion detection and segmentation,
beside support of using OpenCV on GPU using GPUCV.
Machine learning is provided with implementations of
Support Vector Machine (SVM) which is mainly used in
object classification and feature discretization, while Hidden
Marcov Model (HMM) supports activity recognition phase
in the framework. The system was tested against UCF
dataset and speedup of 20x has been achieved on NVidia
9500GT graphics card (32 500MHZ processors).

Keywords— Computer Vision, Action Recognition,
GPU, Teamwork.

1. INTRODUCTION

GPU has been the state-of-the-art technology used to solve
performance problem due to its intensive computational
power, beside its low cost that leads simple personal
computer to have the name of personal super computer by
attaching GPU chip. One of the main companies leading this
chip industry is NVidia. NVidia presents an architecture
known as CUDA provided with SDK that is accessible to
software developers through standard programming
languages. In the same direction, OpenCL initially
developed by Apple Incorporation as standard framework
for writing Kernels on heterogeneous platforms consisting
of CPUs and GPUs. As a result, advances in GPU industry
and development have been achieved and a lot of work has
been done to get GPU applied in many high performance
fields. Examples include Bioinformatics, Image processing
and computer vision.

Applications of image processing include Hyper-spectral
image processing [1] where Javier Setoain et al presented an
investigation of multi-level parallel implementations. In
Computer vision field Jean-Philippe et al presented GPUCV
[2] as GPU implementation of popular OpenCV functions.
This work has achieved slightly improvement of the
speedup in computer vision applications, however
optimality is not ensured due to generality of these
functions. As a rule, special purpose GPU design results in a
big step in performance.

Moreover, Peihua Li et al presented parallel implementation
of mean shift tracking [3] on GPU as 6 kernel functions.
They make use of K-means clustering to partition color
space into distribution of small pins; consequently all key
components were mapped onto GPU with great speedup.

In the same way, a lot of research has been done towards
enhancing performance of detection, tracking and
segmentation phases. Furthermore, noticeable effort has
been exerted to achieve significant improvement in
implementation of machine learning algorithms as a result
of its great contribution in various computer vision
applications. In this direction, Chuan Lui presented GPU
implementations of HMM [4], similarly Austin Carpenter
presented GPU implementation of SVM by Austin
Carpenter [5].

Currently, GPUs are widely deployed as a powerful
resource to achieve intensive computing tasks in high speed.
Since Action recognition systems requires huge
computational power to fit in real-time. This paper builds a
link between GPUs and team work activity recognition
systems as a framework on which many real time systems
can be implemented. This framework targets the developer
of action recognition systems. Through the rest of paper, we
will refer to the target users of the framework as developers.
This paper is organized as follows. Part II presents the
proposed framework. Part III shows High performance
approaches in the framework. Part IV shows how the
framework could be configured for any system. Part V
presents experimental results that report the achieved
speedup.

 … …

 Sliding window

2. GPU TEAMWORK ACTIVITY RECOGNITION
FRAMEWORK

For building a channel between GPUs and activity
recognition systems, we investigated the major techniques
used in action recognition and computer vision having the
objective of making this channel serving as general
framework on which many applications can be built.
Figure1 presents the workflow of the proposed GPU
framework. The input is raw images captured of moving
camera, and the output is the recognized activity. The
colored modules are the ones with general GPU
implementation to be configured according to application
requirements. The non-colored modules (Agent oriented
feature extraction, Team oriented feature extraction) are
implemented by the developer according to the potential
application running under the framework. However the non-
colored modules are implemented by the developer, the
framework provides the developer with GPUCV functions
which gives him support to achieve speedup with minimal
effort. Furthermore, the framework accepts the developer
implementation either on GPU or CPU.

Figure 1: Process flow of the GPU framework

As illustrated in Figure1, the framework spans all stages
required for any action recognition system with specs of
each component defined on the arrows. Besides, the
framework has been built such that functionality of GPUCV
(i.e. GPU version of Intel OpenCV functions) [4] is
supported and integrated as an infrastructure that can be
used by the developer.

Next sections present the detailed implementation of each
component in the framework that together comprises the
framework.

2.1. Moving Motion Detection by sliding window

Qian Yu et al [6] achieved significant acceleration of motion
detection of moving framework based on GPU which leads
to building background model and detecting motion regions
at 18fps 320x240 videos. The process of detection on GPU
was implemented as two steps, warping images and
computing the background model. The main objective was
to minimize memory transferring between GPU and CPU.

Figure 2 illustrates how the structure stores frames of the
window as 2D textures in GPU memory. Next, wrapping
which is done on each frame of the window using GPU.
Next, output of wrapping is passed to GPU component for
collecting statistics from the correspondences of the window
which leads to background model.

Figure 2: Quan Yu et al Motion detection on GPU.

2.2. Segmentation and objects’ data extraction.

In this stage GPU connected component is applied to
segment objects in the scene (Figure 3). The speedup is
gained by dividing image into N blocks then merging the
computations as detailed in [7]. But experiments show that
the cost of this algorithm depends on the size and
complexity of the labeled objects, so this technique may
inherently be not faster than the CPU classical 2-passes
sequential algorithm achieved by using Intel OpenCV
version.

Moving Motion
Detection
By sliding
window

(Qian Yu)

Segmentation and
objects’ data

extraction
(connected comp.)

Binary image

Captured frames from
moving camera

Objects and its data (e.g.
type, location, centroid, etc)

Team oriented feature
extraction

Agent oriented feature
extraction

TW activity
Recognition

/ Learning (cuHMM)

Discretization (cuSVM)

Teamwork features Agent features

Team [discrete] features Agent [discrete] features

Recognized Activity

Object classification (cuSVM,
codebook)

Separated
Objects

Roles Role Assignment /
Learning (ID3)
and Mapping

Object tracking (Peihua Li mean shift)

Current objects mapping to objects
over frames with its data

Warp frame I t-

W/2 to
reference frame

Warp frame I t
to reference
frame

Warp frame I t-

W/2 to reference
frame

Load It-W/2

to GPU

Load It to

GPU

Load

I t+W/2 to

GPU

Collect statistics from all
correspondences

Copy frame buffer memory
to GPU main memory

Figure 3: Segmentation and object extraction

2.3. Object classification (cuSVM, codebook)

This stage of processing is responsible for categorizing
detected objects into classes. Speedup of this stage can be
achieved by multilevel implementation. For instance,
Jianpeng Zhou et al presented codebook algorithm to
classify humans [8], While Vili Kellokumpu et al used SVM
in [9] to classify human postures (Figure 4). So codebook
can be used to ensure filtering out non- human objects, then
human blobs is presented to SVM to classify human
postures. Consequently, GPU implementations of these
models are included as a basic part of the framework.

 (a) (b)

Figure 4: (a) Classification of object as a ball and human
(b) Classification of different human postures.

2.4. Object tracking (Peihua Li)

In this component correspondence mapping of blobs across
frames are constructed. Peihua Li et al’s work [3] was based
on the idea of partitioning the color space of objects which
leads to a quite small number of histogram bins representing
color distribution. That histogram was the base component
of mean shift tracking algorithm. The speedup of object
tracking in the framework is achieved by the GPU
implementation of that algorithm.

Figure 5: Object tracking

2.5. Discretization (cuSVM)

After the detection and classification of objects, the next is
to handle features into HMM for recognition of actions in
discrete form which is welcome by HMM because discrete
HMM is more accurate than continuous HMM as known in
the literature, This phase encapsulate discretization of agent
features (e.g. postures into a set of predefined ones, velocity
as fast or slow,.., etc), and team oriented features (e.g.
cohesion as separated or merged) as illustrated in Figure 5.0.

Figure 6: Discrete Team features

In this phase, the framework provides the developer with
GPU implementation of SVM to discretize features.
Moreover, the developer can integrate his own discretizer
into the framework.

2.6. Role Assignment / Learning (C5.0/ID3) and

Mapping

In this stage each agent in the team is assigned to a role such
that learning phase is done in a consistent and accurate way.
Role assignment and mapping is done using C5.0 which is
based on ID3 decision tree learning algorithm [10]. The
classification involves mapping the data structure that
describes a decision forest to a 2D texture array. Navigation
through the forest for each point of the input data is done in
parallel. Regarding training, the responses of the training
data are computed to a set of candidate features, then, these
responses are scattered into a suitable histogram using a
vertex shader.

2.7. TW activity Recognition / Learning (cuHMM)

Activity Recognition is the last phase in the framework that
has the function of either learning or recognition according
to the mode of the framework. The main Learning model
that has been used in action recognition with a great success
is HMM. Three kernel GPU implementation functions are
provided: Forward, Viterbi and BalmWelch algorithms.
HMM supported in this phase is not restricted only to
teamwork actions but can be generally used in action
recognition phase of any application.

3. HIGH PERFORMANCE APPROACHES IN THE
FRAMEWORK

Parallelism of processing for applications under the
presented framework can be achieved using the following
approaches:

1. Component wise parallelism on GPU in which the

processing logic of each colored component in Figure1
is distributed over GPU processing elements.

2. Sequential phases running on the framework can be
pipelined (e.g. while detected objects of a frame are
segmented in segmentation phase, the motion process
is performed in the next frame).

3. Independent task parallelism which can be exploited in
object classification and action recognition phases.
Object classification is a pure parallel task where
multiple objects can be classified simultaneously. In
action recognition HMMs are built for each action
which can run in parallel.

Methods above show how the parallelism is done. Hence a
question appears. Is there another degree of freedom for
configuring the hardware to gain more performance
improvement? Our investigations led to two types of
variations on the hardware platform for accelerating
framework task:

1. Multiple GPU tasks can be done by attaching more

cards to the same PC if applicable (High speed bus
will be critical issue here).

2. The framework can be installed over PCs connected
by high speed LAN with each PC attached with one or
more GPUs as known as GPUs-Grid.

4. CONFIGURING SYSTEMS RUNNING UNDER
THE FRAMEWORK

There are two types of configurations required for full
utilization of the GPU framework: one is software and the
other is hardware.

4.1. Components’ configuration (software)

In this stage, the developer makes selections of stages that
will be utilized during the processing of his target system,

then adjusts the parameters of each component that fit into
system requirements. The configuration parameters for each
phase are listed as follows.

• Moving Motion Detection By sliding window: length

of sliding windows with 91 as the default length, and
number of histogram pins [6].

• Segmentation and objects’ data extraction: the number
of N partitions [7]

• Object classification: feature vector length, and
number of classes [5].

• Mean Shift tracking: the number of clusters K as the
tracking algorithm is based on K-means clustering [3]

• Role Assignment and mapping (ID3 algorithm): mode
(TreeLeaf, ForestLeaves and etc), number of trees and
number of classes [10].

• TW activity Recognition (HMM): number of hidden
states, feature vector size, blocks size and number of
actions. The default value of the block size is 16 [4].

4.2. Environment setup (hardware configuration)

After components’ configuration, the next is to install the
hardware components in hand. The minimum requirement is
to have one node with one GPU card on which all
configured GPU components would run, the first approach
in part III.

For more complex situation where environment contains
grid of nodes with each node containing at least a GPU card,
all types of parallelism approaches in part III are applicable.
Pipelining and Independent task parallelism are achieved
either within same machine with multiple GPUs or across
high speed LAN. The two methods are detailed as follows.

1. Multi-GPUs on a single machine: This is most

recommended for tasks that require processing
relatively large data to overcome communication cost
over intranet. This will be more suitable for pipelining
the stages of the configured systems (e.g. detection,
tracking, segmentation, etc).

2. GPU Grid distributed over different machines: This is
recommended if a lot of learned data is stored over
network and hence features would have relatively
small size to broadcast over network then gain
recognition data. This would be suitable for
classification and recognition that use large data for

learning (e.g. object classification, action recognition
phases).

The key of successful configuration of the framework is
how to organize available resources to fit processing
requirements of the target system with optimal GPU
utilization The optimum goal here is to configure the
framework to minimize the processing time (denoted as T)
required for recognizing actions given by Equation 1:

T = ∑ PTcpu(i) + ∑ PTgpu (j) + ∑ CTgpu_cpu (k) +
∑ CTnode_node (l) (1)

Where PTcpu(i) is the processing time of task i on a CPU.
PTgpu(j) is the processing time of task j on a GPU.
CTgpu_cpu(k) is the communication time for task k
between a GPU and a CPU. CTnode_node(l) is the
communication cost for task l between two nodes belonging
to the GPUs-Grid if applicable.

5. EXPERIMENTAL RESULTS

This section provides speedup results for each of the GPU
components comprising the framework. Besides, it provides
overall speedup of the framework in terms of a selected
application.

5.1. Moving Motion Detection by sliding window

GPU version using the adaptive mean as the background
model with 91 frame sliding window can run at around 18
fps on 320x240 resolution videos. The mode approach can
run at 10 fps with the same setting. The GPU version of the
mean approach achieves around 12x speedup over its
standard CPU counterpart. The GPU version of the mode
approach achieves around 15x speedup.

5.2. Segmentation and objects’ data extraction

This part is not recommended to use due to its GPU version
is slower than CPU version. In case of image with
2048x2048 as dimensions on 9800GT, the speedup is
0.769231x which means slowdown, however it could result
in speedup if GPU with higher capability is used. So it is
subject to use depending on HW and complexity of input
objects.

5.3. Object classification and Discretization (cuSVM)

Achieved speedup in cuSVM reached about 35x for training
SVM, 84x for corresponding prediction. This speedup was

recorded against MNIST data set (LeCun et al., 1998) on
NVIDIA GTX 260 GPU.

5.4. Object tracking

The experiments show a speedup in blob tracking reaching
3.36x using the famous CAVIAR data set on GeForce 8800
GTS GPU.

5.5. Role Assignment / Learning (C5.0/ID3) and
Mapping

129x speedup in argmax mode using object recognition as
an application on GPU nVidia GeForce GTX 280 (240
stream processors)

5.6. TW activity Recognition / Learning (cuHMM)

880x speedup of forward algorithm GPU implementation
while 180x is the speedup of Baumwelch algorithm GPU.
This test was done on 512x512 (number of states x number
of sequences) on NVIDIA G92 with 512MB RAM.

5.7. Evaluation of framework speedup

To test the applicability of the framework, we selected the
system in [11] which is “role based activity recognition in
observations of embodied agent actions”.

The researchers in [11] used labeled data set, so motion
detection, segmentation and tracking are filtered out in
components’ selection step of the configuration. The
components’ configuration of that system is presented as
follows.

• Discretization: in this component, the developer
uses custom thresholds to transfer features from
continuous to discrete.

• Role Assignment and mapping (ID3 algorithm):
TreeLeaf mode, single tree and 4 classes (4
different roles).

• TW activity Recognition (HMM): number of
hidden states is five, feature vector size is 6, and
number of actions is six. .

This system was tested using UCF dataset on NVidia
9500GT graphics card (32 500MHZ processors) against
3.2GHZ dual core processor, and speedup of 20x was
gained. Gained speedup increases dramatically as
capabilities increases.

6. CONCLUSION AND FUTURE WORK

We have presented a GPU framework for action recognition
that can be configured to any action recognition system,
furthermore key approaches for good utilization of the
framework have been presented. Experiments shows how
the framework is configured in teamwork action recognition
system with speedup of 20x achieved on NVidia 9500GT
graphics card.

Future work includes enrichment of each phase on the
framework with more GPU implementations of relevant
algorithms .Examples include GPU implementations of

• Particle filters for object tracking.

• Correleogram based segmentation algorithm to
resolve the problem of overlapping objects.

• Codebook based algorithm in object classification
phase.

Additionally a study can be build up on the framework
showing how it varies with different setups of GPU-Grids
with variation of number of nodes in the Grid and number of
GPU cards in each node. This study may lead to automatic
configuration of any system according to the available
hardware.

7. REFERENCES

[1] Javier Setoain, Manuel Prieto,Christian Tenllado ,and Francisco

Tirado, “GPU for Parallel On-Board Hyperspectral Image
Processing”, Sage Publications,CA,USA, November 2008 .

[2] Jean-Philippe Farrugia, Patrick Horain, Erwan Guehenneux,and
Yannick Alusse, “GPUCV: A FRAMEWORK FOR IMAGE
PROCESSING ACCELERATION WITH GRAPHICS
PROCESSORS”, Lyon University,2006.

[3] Peihua Li and Lijuan Xiao, “Mean Shift Parallel Tracking on GPU”,
Springer-Verlag Berlin, Heidelberg,2009.

[4] Chuan Liu, “a CUDA Implementation of Hidden Markov Model
Training and Classification” Johns Hopkins University, May 2009

[5] Austin Carpenter,”A CUDA IMPLEMENTATION OF SUPPORT
VECTOR CLASSIFICATION AND REGRESSION”,2009

[6] Qian Yu, and Gerard Medioni, “A GPU-based implementation of
Motion Detection from a Moving Platform”, IEEE ,23-28 June 2008.

[7] Sean M. O'Connell , “A GPU Implementation of Connected
Component Labeling ”, Illinois State University, 2009.

[8] Jianpeng Zhou and Jack Hoang , “Real Time Robust Human
Detection and Tracking System” San Diego, USA , IEEE, 2005.

[9] Vili Kellokumpu, Matti Pietikäinen, and Janne Heikkilä. “Human
Activity Recognition Using Sequences of Postures”,p 2 . IAPR, 2005.

[10] Toby Sharp, ”Implementing Decision Trees and Forests on a GPU”,
Springer ,2008.

[11] Linus J. Luotsinen and Ladislau Bölöni “Role-Based Teamwork
Activity Recognition inObservations of Embodied Agent Actions”,
Richland, SC ,2008

