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ABSTRACT 
 
Real time processing for teamwork activity recognition is a 
challenge due to complex computational models built for 
achieving high system accuracy. Hence, this paper proposes 
a framework based on Graphical processing Units (GPUs) to 
achieve speed–up in the performance of role based activity 
recognition of teamwork. The framework can be applied in 
various fields, especially athletic and military applications. 
Furthermore, the framework can be customized for any 
action recognition application. The paper presents the stages 
of the framework where GPUs is the key for performance 
improvement. The speedup is achieved in terms of video 
processing and Machine learning algorithms implemented 
on GPU. Video processing is supported as GPU 
implementation of Motion detection and segmentation, 
beside support of using OpenCV on GPU using GPUCV. 
Machine learning is provided with implementations of 
Support Vector Machine (SVM) which is mainly used in 
object classification and feature discretization, while Hidden 
Marcov Model (HMM) supports activity recognition phase 
in the framework. The system was tested against UCF 
dataset and speedup of 20x has been achieved on NVidia 
9500GT graphics card (32 500MHZ processors). 
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1. INTRODUCTION 
 
GPU has been the state-of-the-art technology used to solve 
performance problem due to its intensive computational 
power, beside its low cost that leads simple personal 
computer to have the name of personal super computer by 
attaching GPU chip. One of the main companies leading this 
chip industry is NVidia. NVidia presents an architecture 
known as CUDA provided with SDK that is accessible to 
software developers through standard programming 
languages. In the same direction, OpenCL initially 
developed by Apple Incorporation as standard framework 
for writing Kernels on heterogeneous platforms consisting 
of CPUs and GPUs. As a result, advances in GPU industry 
and development have been achieved and a lot of work has 
been done to get GPU applied in many high performance 
fields. Examples include Bioinformatics, Image processing 
and computer vision.  

 
Applications of image processing include Hyper-spectral 
image processing [1] where Javier Setoain et al presented an 
investigation of multi-level parallel implementations. In 
Computer vision field Jean-Philippe et al presented GPUCV 
[2] as GPU implementation of popular OpenCV functions. 
This work has achieved slightly improvement of the 
speedup in computer vision applications, however 
optimality is not ensured due to generality of these 
functions. As a rule, special purpose GPU design results in a 
big step in performance.  
 
Moreover, Peihua Li et al presented parallel implementation 
of mean shift tracking [3] on GPU as 6 kernel functions. 
They make use of K-means clustering to partition color 
space into distribution of small pins; consequently all key 
components were mapped onto GPU with great speedup. 
 
In the same way, a lot of research has been done towards 
enhancing performance of detection, tracking and 
segmentation phases. Furthermore, noticeable effort has 
been exerted to achieve significant improvement in 
implementation of machine learning algorithms as a result 
of its great contribution in various computer vision 
applications. In this direction, Chuan Lui presented GPU 
implementations of HMM [4], similarly Austin Carpenter 
presented GPU implementation of SVM by Austin 
Carpenter [5]. 
 
Currently, GPUs are widely deployed as a powerful 
resource to achieve intensive computing tasks in high speed. 
Since Action recognition systems requires huge 
computational power to fit in real-time. This paper builds a 
link between GPUs and team work activity recognition 
systems as a framework on which many real time systems 
can be implemented.  This framework targets the developer 
of action recognition systems. Through the rest of paper, we 
will refer to the target users of the framework as developers. 
This paper is organized as follows. Part II presents the 
proposed framework. Part III shows High performance 
approaches in the framework. Part IV shows how the 
framework could be configured for any system. Part V 
presents experimental results that report the achieved 
speedup. 
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2. GPU TEAMWORK ACTIVITY RECOGNITION 
FRAMEWORK 

 
For building a channel between GPUs and activity 
recognition systems, we investigated the major techniques 
used in action recognition and computer vision having the 
objective of making this channel serving as general 
framework on which many applications can be built. 
Figure1 presents the workflow of the proposed GPU 
framework. The input is raw images captured of moving 
camera, and the output is the recognized activity. The 
colored modules are the ones with general GPU 
implementation to be configured according to application 
requirements. The non-colored modules (Agent oriented 
feature extraction, Team oriented feature extraction) are 
implemented by the developer according to the potential 
application running under the framework. However the non-
colored modules are implemented by the developer, the 
framework provides the developer with GPUCV functions 
which gives him support to achieve speedup with minimal 
effort. Furthermore, the framework accepts the developer 
implementation either on GPU   or CPU. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Process flow of the GPU framework 
 

As illustrated in Figure1, the framework spans all stages 
required for any action recognition system with specs of 
each component defined on the arrows. Besides, the 
framework has been built such that functionality of GPUCV 
(i.e. GPU version of Intel OpenCV functions) [4] is 
supported and integrated as an infrastructure that can be 
used by the developer. 
 

Next sections present the detailed implementation of each 
component in the framework that together comprises the 
framework. 
 
2.1. Moving Motion Detection by sliding window 
 
Qian Yu et al [6] achieved significant acceleration of motion 
detection of moving framework based on GPU which leads 
to building background model and detecting motion regions 
at 18fps 320x240 videos. The process of detection on GPU 
was implemented as two steps, warping images and 
computing the background model. The main objective was 
to minimize memory transferring between GPU and CPU. 
 
Figure 2 illustrates how the structure stores frames of the 
window as 2D textures in GPU memory. Next, wrapping 
which is done on each frame of the window using GPU. 
Next, output of wrapping is passed to GPU component for 
collecting statistics from the correspondences of the window 
which leads to background model. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Quan Yu et al Motion detection on GPU. 
 
2.2. Segmentation and objects’ data extraction. 
 
In this stage GPU connected component is applied to 
segment objects in the scene (Figure 3). The speedup is 
gained by dividing image into N blocks then merging the 
computations as detailed in [7]. But experiments show that 
the cost of this algorithm depends on the size and 
complexity of the labeled objects, so this technique may 
inherently be not faster than the CPU classical 2-passes 
sequential algorithm achieved by using Intel OpenCV 
version. 
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Figure 3: Segmentation and object extraction 
 
2.3.  Object classification (cuSVM, codebook) 
 
This stage of processing is responsible for categorizing 
detected objects into classes.  Speedup of this stage can be 
achieved by multilevel implementation. For instance, 
Jianpeng Zhou et al presented codebook algorithm to 
classify humans [8], While Vili Kellokumpu et al used SVM 
in [9] to classify human postures (Figure 4). So codebook 
can be used to ensure filtering out non- human objects, then 
human blobs is presented to SVM to classify human 
postures. Consequently, GPU implementations of these 
models are included as a basic part of the framework. 
 
 

     
          
 
 
         
                    (a)                                                (b) 

Figure 4: (a) Classification of object as a ball and human 
(b) Classification of different human postures. 

 
 
2.4.  Object tracking (Peihua Li) 
 
In this component correspondence mapping of blobs across 
frames are constructed. Peihua Li et al’s work [3] was based 
on the idea of partitioning the color space of objects which 
leads to a quite small number of histogram bins representing 
color distribution. That histogram was the base component 
of mean shift tracking algorithm. The speedup of object 
tracking in the framework is achieved by the GPU 
implementation of that algorithm. 
 
 
 

 
 
 
 
 
 
 

 
 
 

Figure 5: Object tracking 
 

2.5. Discretization (cuSVM) 
 
After the detection and classification of objects, the next is 
to handle features into HMM for recognition of actions in 
discrete form which is welcome by HMM because discrete 
HMM is more accurate than continuous HMM as known in 
the literature, This phase encapsulate discretization of agent 
features (e.g. postures into a set of predefined ones, velocity 
as fast or slow,.., etc), and team oriented features (e.g. 
cohesion as separated or merged) as illustrated in Figure 5.0. 
 

 
Figure 6: Discrete Team features 

 
In this phase, the framework provides the developer with 
GPU implementation of SVM to discretize features. 
Moreover, the developer can integrate his own discretizer 
into the framework. 
 
2.6. Role Assignment / Learning (C5.0/ID3) and 

Mapping 
 
In this stage each agent in the team is assigned to a role such 
that learning phase is done in a consistent and accurate way. 
Role assignment and mapping is done using C5.0 which is 
based on ID3 decision tree learning algorithm [10]. The 
classification involves mapping the data structure that 
describes a decision forest to a 2D texture array. Navigation 
through the forest for each point of the input data is done in 
parallel. Regarding training, the responses of the training 
data are computed to a set of candidate features, then, these 
responses are scattered into a suitable histogram using a 
vertex shader. 
 
2.7. TW activity Recognition / Learning (cuHMM) 
 
Activity Recognition is the last phase in the framework that 
has the function of either learning or recognition according 
to the mode of the framework. The main Learning model 
that has been used in action recognition with a great success 
is HMM.  Three kernel GPU implementation functions are 
provided: Forward, Viterbi and BalmWelch algorithms. 
HMM supported in this phase is not restricted only to 
teamwork actions but can be generally used in action 
recognition phase of any application. 

 



3. HIGH PERFORMANCE APPROACHES IN THE 
FRAMEWORK 

 
Parallelism of processing for applications under the 
presented framework can be achieved using the following 
approaches: 
 
1. Component wise parallelism on GPU in which the 

processing logic of each colored component in Figure1 
is distributed over GPU processing elements. 

2. Sequential phases running on the framework can be 
pipelined (e.g. while detected objects of a frame are 
segmented in segmentation phase, the motion process 
is performed in the next frame). 

3. Independent task parallelism which can be exploited in 
object classification and action recognition phases. 
Object classification is a pure parallel task where 
multiple objects can be classified simultaneously. In 
action recognition HMMs are built for each action 
which can run in parallel. 

Methods above show how the parallelism is done. Hence a 
question appears. Is there another degree of freedom for 
configuring the hardware to gain more performance 
improvement? Our investigations led to two types of 
variations on the hardware platform for accelerating 
framework task: 
 
1. Multiple GPU tasks can be done by attaching more 

cards to the same PC if applicable (High speed bus 
will be critical issue here). 

2. The framework can be installed over PCs connected 
by high speed LAN with each PC attached with one or 
more GPUs as known as GPUs-Grid. 

 

4. CONFIGURING SYSTEMS RUNNING UNDER 
THE FRAMEWORK 

 
 
There are two types of configurations required for full 
utilization of the GPU framework: one is software and the 
other is hardware. 
 

4.1. Components’ configuration (software) 

 
In this stage, the developer makes selections of stages that 
will be utilized during the processing of his target system, 

then adjusts the parameters of each component that fit into 
system requirements. The configuration parameters for each 
phase are listed as follows. 
 
• Moving Motion Detection By sliding window:  length 

of sliding windows with 91 as the default length, and 
number of histogram pins [6]. 

• Segmentation and objects’ data extraction: the number 
of N partitions [7] 

• Object classification:  feature vector length, and 
number of classes [5]. 

• Mean Shift tracking: the number of clusters K as the 
tracking algorithm is based on K-means clustering [3] 

• Role Assignment and mapping (ID3 algorithm): mode 
(TreeLeaf, ForestLeaves and etc), number of trees and 
number of classes [10]. 

• TW activity Recognition (HMM): number of hidden 
states, feature vector size,   blocks size and number of 
actions. The default value of the block size is 16 [4]. 

 

4.2. Environment setup (hardware configuration) 

 
After components’ configuration, the next is to install the 
hardware components in hand. The minimum requirement is 
to have one node with one GPU card on which all 
configured GPU components would run, the first approach 
in part III. 
 
For more complex situation where environment contains 
grid of nodes with each node containing at least a GPU card, 
all types of parallelism approaches in part III are applicable. 
Pipelining and Independent task parallelism are achieved 
either within same machine with multiple GPUs or across 
high speed LAN. The two methods are detailed as follows. 
 
1. Multi-GPUs on a single machine: This is most 

recommended for tasks that require processing 
relatively large data to overcome communication cost 
over intranet. This will be more suitable for pipelining 
the stages of the configured systems (e.g. detection, 
tracking, segmentation, etc).   

2. GPU Grid distributed over different machines: This is 
recommended if a lot of learned data is stored over 
network and hence features would have relatively 
small size to broadcast over network then gain 
recognition data. This would be suitable for 
classification and recognition that use large data for 



learning (e.g. object classification, action recognition 
phases).  

The key of successful configuration of the framework is 
how to organize available resources to fit processing 
requirements of the target system with optimal GPU 
utilization The optimum goal here is to configure the 
framework to minimize the processing time (denoted as T) 
required for recognizing actions given by Equation 1:  
 
T = ∑ PTcpu(i) + ∑ PTgpu (j) +  ∑ CTgpu_cpu (k) +
∑ CTnode_node (l)                                                             (1)  
 
Where PTcpu(i) is the processing time of task i on a CPU. 
PTgpu(j)  is the processing time of task j on a GPU. 
CTgpu_cpu(k)  is the communication time for task k 
between a GPU and a CPU. CTnode_node(l)  is the 
communication cost for task l between two nodes belonging 
to the GPUs-Grid if applicable. 
 

 
5. EXPERIMENTAL RESULTS 

 
This section provides speedup results for each of the GPU 
components comprising the framework. Besides, it provides 
overall speedup of the framework in terms of a selected 
application. 
 

5.1. Moving Motion Detection by sliding window  
 
GPU version using the adaptive mean as the background 
model with 91 frame sliding window can run at around 18 
fps on 320x240 resolution videos. The mode approach can 
run at 10 fps with the same setting. The GPU version of the 
mean approach achieves around 12x speedup over its 
standard CPU counterpart. The GPU version of the mode 
approach achieves around 15x speedup. 
 

5.2. Segmentation and objects’ data extraction 
 
This part is not recommended to use due to its GPU version 
is slower than CPU version. In case of image with 
2048x2048 as dimensions on 9800GT, the speedup is 
0.769231x which means slowdown, however it could result 
in speedup if GPU with higher capability is used. So it is 
subject to use depending on HW and complexity of input 
objects. 
 

5.3. Object classification and Discretization (cuSVM)  
 
Achieved speedup in cuSVM reached about 35x for training 
SVM, 84x for corresponding prediction. This speedup was 

recorded against MNIST data set (LeCun et al., 1998) on 
NVIDIA GTX 260 GPU. 
 

5.4. Object tracking  
 
The experiments show a speedup in blob tracking reaching 
3.36x using the famous CAVIAR data set on GeForce 8800 
GTS GPU. 
 

5.5. Role Assignment / Learning (C5.0/ID3) and 
Mapping 

 
129x speedup in argmax mode using object recognition as 
an application on GPU nVidia GeForce GTX 280 (240 
stream processors) 
 

5.6. TW activity Recognition / Learning   ( cuHMM)  
 
880x speedup of forward algorithm GPU implementation 
while 180x is the speedup of Baumwelch algorithm GPU. 
This test was done on 512x512 (number of states x number 
of sequences) on NVIDIA G92 with 512MB RAM.  
 

5.7. Evaluation of framework speedup 
 
To test the applicability of the framework, we selected the 
system in [11] which is “role based activity recognition in 
observations of embodied agent actions”.  
  
The researchers in [11] used labeled data set, so motion 
detection, segmentation and tracking are filtered out in 
components’ selection step of the configuration. The 
components’ configuration of that system is presented as 
follows. 
 

• Discretization:  in this component, the developer 
uses custom thresholds to transfer features from 
continuous to discrete. 

• Role Assignment and mapping (ID3 algorithm): 
TreeLeaf mode, single tree and 4 classes (4 
different roles). 

• TW activity Recognition (HMM): number of 
hidden states is five, feature vector size is 6,   and 
number of actions is six. . 

This system was tested using UCF dataset on NVidia 
9500GT graphics card (32 500MHZ processors) against 
3.2GHZ dual core processor, and speedup of 20x was 
gained. Gained speedup increases dramatically as 
capabilities increases. 



6. CONCLUSION AND FUTURE WORK 
 
We have presented a GPU framework for action recognition 
that can be configured to any action recognition system, 
furthermore key approaches for good utilization of the 
framework have been presented. Experiments shows how 
the framework is configured in teamwork action recognition 
system with speedup of 20x achieved on NVidia 9500GT 
graphics card. 
 
Future work includes enrichment of each phase on the 
framework with more GPU implementations of relevant 
algorithms .Examples include GPU implementations of  
 

• Particle filters for object tracking. 

• Correleogram based segmentation algorithm to 
resolve the problem of overlapping objects. 

• Codebook based algorithm in object classification 
phase. 

Additionally a study can be build up on the framework 
showing how it varies with different setups of GPU-Grids 
with variation of number of nodes in the Grid and number of 
GPU cards in each node. This study may lead to automatic 
configuration of any system according to the available 
hardware. 
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