Acknowledgements

In the name of Allah, the Merciful, the Compassiena

Before indulging into the technical details of quoject, we would like to start by
thanking our dear supervisor, Prof. Dr. Mohammadefa Ghoneimy, for his
continuous support, endless trust, and encouragpmeciation of our work. He
indeed was a very important factor in the succé#lsi® project, as he smoothed away
our uneven road, and helped us get past all optbblems that we faced. He was
very considerate and understanding, kindly apptiegdhe circumstances that forced
us to be sometimes behind the deadlines. We hgpetin work in this document and
the final product will acquire his content and sfaittion.

Also, we would like to thank Eng. Mohammad Samy, agsistant supervisor, whose
simplicity and genius are indeed a wonderful migtude was very careful to observe
our work and to look closely into technical detapsoviding us with precious advice
and innovative suggestions to improve various aspafcour product. During that, he
was a close friend, and we indeed felt him as driteeoteam members rather than a
supervisor.

In addition to official supervisors, we would like thank Eng. Sally Sameh, and our
friend Sameh Sayed, who provided us with very Usefaterial and advice for the

IDE. We are very thankful indeed to Sameh, who wedaly there whenever we

needed him, and never refrained from granting dilatwhe had. We hope his
wonderful project, MIRS, will be a real successitasally deserves.

And we mustn't forget our proficient designer, Mdat Mohie, who designed the
CCW logo and the cover of this document, howeveylhe was. We hope that his
project will be one of the best projects ever pregan our dear faculty.

In the end, we thank our parents who supportechtmigghout the whole year, and
suffered hard times during our sleepless nightsdespherate moments. We've worked
hard to make their tiredness fruitful, and we hope success will be the best gift we
present to them.

Regards,
CCW Team

Mohammad Saber AbdelFattah
Mohammad Hamdy Mahmoud
Hatem AbdelGhany Mahmoud
Mohammad El-Sayed Fathy
Omar Mohammad Othman

Abstract

Compilers are extremely important programs thatehbeen used since the very
beginning of the modern "computing era". Developeave tried writing manual

compilers for long. They faced too many problemg, this was their only available

option.

In general, compiler writing has always been regdrds a very complex task. In
addition to requiring much time, a massive amotntasd and tedious work has to be
done. The huge amount of code meant — inevitably proportional number of
mistakes that normally lead to syntax and evenchgerrors. In addition, the larger
the code gets, the harder the final product caddbeigged and maintained. A minor
modification in the compiler specification usuatsulted in massive changes to the
code. The result was usually an inefficient an@uaér-to-maintain compiler.

Scientists have observed that much of the effoetrted during compiler writing is
redundant as the same principal tasks were repeatmssively. These observations
strengthened the belief that some major phases udflimgy compilers can be
automated. Byautomatinga process it's generally meant that the develispenly to
specify what, rather than how, that process iset@tne. The developer's mission is
much easier — more specifications, less coding;jeswlerrors as well.

Up till now, it's widely acceptable that the phagskat are — practically — "fully-
automatable" are building the lexical analyzer afl @s building the parser. Attempts
to automate semantic analysis and code generatiere \wmuch less successful,
although the latter is improving rapidly.

The proposed projeds mainly to develop a tool that takes a speciicatof the
lexical analyzer and/or the parser and generatesettical analyzer and/or the parser
code in a specific programming language. This ellintroduced to the user through
a dedicated IDE that also offers a number of tomlselp him/her achieve the mission
in minimum time and effort.

Table Of Contents

LIST OF ILLUSTRATIONS ...euitnienteneenenensensensensensensansanenseasensensensensansensnnsnnensens -7-
TABLES ..ottt e -7-
EXAMPLE TABLES. .. ettt ettt e e e e -8-
I GURE S ...ttt et -9-
EXAMPLE FIGURES eene et et e e e e r e e e -10-

PART I: A GENERAL INTRODUCTION

1. BASIC CONCEPTS ..uuiuuituiettienieetratetreneeneeaseenresrensenesrnsesssensennsrnsesnsensenns -13-
oA DEFINITION L.eten et e e e -13-
1.2 HISTORICAL BACKGROUNDuieeeeee e e -13-
1.3 FEASIBILITY OF AUTOMATING THE COMPILER CONSTRUCTION PROCESS......... -14 -

2. THE COMPILER CONSTRUCTION LIFECYCLE ...ovuvivnieneeeirnreeienenneenneensennenns -16 -
2.1 FRONT AND BACK ENDSnieeeeeee et -16 -
2.2 BREAKING DOWN THE WHOLE PROCESS INTO PHASESoieeeeeeeeeeeeeeeeeeen -18 -

22.1 The ANalySiS PRaSES...........cceeevsmmmmmmmssssnnnnseaaaaeeeeeeasseeeensnnnnnnnnn 19 -
2.2.1.1 Linear (Lexical) Analysisccceeeeeeeiiicieeeeeeeeeee.2 19 -
2.2.1.2 Hierarchical (Syntactic) ANAIYSIS ...ceeeeeruremmiiiiiiiiiiiieiiieiiiieeeeeeeeee 02
2.2.1.3 SemantiC ANalySIS.......cccooeiiiiiiiccc e 21 -

2.2.2 The SynthesisS PRASESuuiiiiii e 2% -
2.2.2.1 Intermediate Code GENEIALIONomemeenrerereneeieeeirerereeareiaeennen b 2
2.2.2.2 Code Optimizationceeeeeeimmeaeiiiiieaeeeeeeeeaeeeeeeeeeeeeneeeeeeeeeeeeean 21 -
2.2.2.3 Final Code GENEratioNcoiveevemeieieeeeieeeieeeeieeeeieeesrenessnnenn 21 -

22 .3 MeIA-PRASES ... e e =22 -
2.2.3.1 Symbol-Table Management............cccceviiiiiriiieieee e -22
2.2.3.2 Error HaNAIiNGuuueunnnneen s o eeesnsennninnnnsnnssnnnn s ssnnns -22 -

3. PROBLEM DEFINITIONccoiiiiuiiiiiiiiiiiiens e -23-
3.1 HISTORICAL BACKGROUND .. .ceneeeee e e -23-
3.2 COMPILER CONSTRUCTION TOOLKITS: WHY 2. -23-
3.3 PRACTICAL AUTOMATION OF COMPILER WRITING PHASESccvveeeeeeeeeeeeaeen. -24 -
I |V [0} 1 LY7o N PR -26-

4. RELATED WORKcutuienitnienieeeeateasessasenssasensnssnssnsnsenssnsenssnrenssnsnssnssnsens -27 -
4.1 SCANNER GENERATORS —LEX ..o, -27 -
4.2 PARSER GENERATORS = YACC . ettt -28 -

4.3 FLEX AND BISON ...ttt -28-

4.4 OTHER TOOLS. ittt e -29-
4.5 CONCLUSION .ttt e -31-
. OUR OBUECTIVE .. ttueeieueeetassasenssenseasssasenssensensssasennsenssnnsenssensenssensennsen -32-
6. DOCUMENT ORGANIZATION....cuutuurenieneeanrenrenrensenerssessessessernsesssesssensennees -33-
PART II: TECHNICAL DETAILS
1. ARCHITECTURE AND SUBSYSTEMS....uicuuituirunienreneeniensernsessrensensernsesnsensenns -35-
2. THE LEXICAL ANALYSIS PHASE......itiitiieieeiiiietiieeeeerasesnrenssnerasssnsensenns -38 -
2.1 MORE ABOUT LEXICAL ANALYSIS - eeeeee et et -38-
pZA N B 1< i o 11 To) o TR -38 -
212 LeXiCal TOKENS ... et -.38 -
21.3 Regular EXPreSSIONSiiiiiiiiee sttt 40 -
21.4 Deterministic Finite AULOMALA...o -42 -
21.5 Nondeterministic Finite AUtOMAta.......oeuveeeeeeeeeeeeee e, -43 -
2.2 LEXCELLENT: AN INTRODUCTIONeueeee e -45-
2.3 THE INPUT STREAM ... ettt e -46 -
2.3.1 UNICOde ProblemsSo e -46 -
2.3.1. 1 What iS UNICOAR? .. .ce et eemmceme et eee e e e e eaeneenanenneeennn = 40 -
P T A Il o T3 = V0] o] (=T o o (TR - 46 -
2.4 INPUT FILE FORMAT ...ttt -49 -
2.4.1 Top File DefinitioN........ooo oot =49 -
2.4.2 Class DEefiNITION ...ccueee et -53 -
A B RUIES. ... -53 -
2.4.4 Extended DefinitioNS (1)coovviiiieeeiiiiiiiiiiiiee e 85 -
2.4.5 Extended DefiNitioNS (2)ccovveviieeeeeeeiiiiciee e e 56 -
2.5 INPUT FILE ERROR HANDLING ... ettt et -56 -
2.6 THOMPSON CONSTRUCTION ALGORITHM ..ttt e e eeaees -63-
2.7 SUBSET CONSTRUCTION ALGORITHM ...eneeeeee e -69-
2.7.1 THE BASIC IUBA. . cn et et e e eenns -.69 -
2.7.2 The IMplementationccc.. o enseeeeeeeeeeeeeeeeeeeesennnnnnnnns 70 -
2.7.3 CONIDULION .. e aaana -72 -
2.8 DFA MINIMIZATION ..o e -74 -
2.9 DFA COMPRESSION ...eneee et e e -77 -
2.9.1 Redundancy Removal ComMpPresSion......ccceeuvvieiiiinineeeeeeeeeeeeeee. -78 -
2.9.2 PairsS COMPIESSIONuvruureuunns s s s e eeeeeeeaaseeseeeesnsnnnnnnnnnaess =78 -
2.10 THE GENERATED SCANNER .. cuteineti et -79-
2.10.1 The Transition Table ... 80 -
2.10.1.1 NO COMPIrESSION ...ovvvviieiieeeiiiimmmmmeeeeeeessasinnnnreeeeeesessssnnnnneeens 2 80 -
2.10.1.2 Redundancy Removal COmMPreSSion ... eeeeereeereeeeeeeeeeeeeennnnnn - 81 -
2.10.1.3 Pairs COMPIeSSIONuvveiiieeeeeereeeessassiinnrereeeeessssssnnnneeeenn 2 O1 -
2.10.2 The Input MeChaniSM...........ooviiiccceee e 28
Pt O T2t R O] 1= 1 1 (o3 (o) -82 -

2.10.2.2 DAt MEMDEIS ... ieeiieie et eemeee et e et e e e e e e e eeenem O3 -

b2 K 2 Y, = 1 T To £ RPN -83-
2.10.3 TNE DIIVEI ittt s+ e e e e e e e e e e enead -84 -
2.10.4 The Lexical Analyzer ClassS.........cccereruiiiiiiiiiianeeee e e eeeeeeeeieinns - 86
2.00.4.1 CONSITUCLOIS ..eeiiiiiiieeeeee ettt s+ttt e e e e e eeebb e e e e e eeeenennnes - 86 -
2.10.4.2 CONSLANTS....coiiiiiiiiiiiitiiitttceeeeeeeeeeeeeeseeesbeebbbebbbebbbbbbbbeeaeeebneennees - 86 -
2.10.4.3 Data MEMDErS.......ccoiiiiiiiiiiiceeeeee et siiieneeeeeeeeeam O -
b KO I Y = 1 T T £ RPN -87 -
2,11 HELPER TOOLS ...iiiiiie ettt e etee e et et e et e e e e et eeanteeesnseaeanneeeanneeeanneeaens - 87 -
2.11.1 Graphical GTG EdItOr.......uuuiiiiiiceeeeeiiee e - 87
00 It Ot Ot I 7= 1 11 1o T - 88 -
200,02 WHY GTGS? c.eiiiiieiiieeeiteeettettmmenees e s s e e e e e e e e e e e e aeeaaeaaaaaeaaaaaaaaaaanennm 89 =
2.11.1.3 GTG to Regular Expression: The Algorithm..............cccccvvvvvinnnn. -90 -
2.11.1.4 Implementation Details ... 2 92 -
2.11.1.5 GEOMELIC ISSUESceeiieeeiiiieeeeeeee e 93 -
3. THE PARSING PHASEcccettiiiiiiiiiieieieieeeneeeeeeeseeeseeesenesssssssssssssnsesnsnsnnnns -98 -
3.1 MORE ABOUT PARSINGceeitiieitiieesiiieesiieesteeeseeeeaseeesteeesaeeeanneeeenneeeennes -98 -
3.1.1 A General INtrodUCTIONccoeiii ittt a8 -
3.1.2 Advantages of using Grammars........ .o eceeeeerneeeeesnnniineeeeennns = 99 =
3.1.3 Syntax Trees vS. Parse Treesmmeeeeciiiiiiiieeeeeeeeneeeeennnnnn. = 100 -
3.2 RECURSIVE DESCENT PARSERS.......cuciiiiiiiiieiii ettt -101 -
.3 LL(1) PARSERSttt ettt -107 -
3.3 L DEFINITION e - 107 -
3.3.2 Architecture of an LL Parserccccceiiiiiiiiiiiiiiiiieceieeeeeeee - 107 -
3.3.3 Constructing an LL(1) Parsing Table........c.cccoooiiiiiiiiiiiiiiiiinnnn, - 109 -
3.4 INPUT FILE FORMATcutitiiiiiiei ettt -110-
3.4.1 Input File Syntax: The Overall PiCture wo......ccoocevveeinncinnennen. - 111 -
3.4.2 Input File Syntax: The DetailSccoorviiiiiiiiiiiiieeeeeii, -111 -
3.4.3 RESOIVEIS ...ttt ettt e e e e e e e e e nnnad -113 -
3.4.4 COMMENES....ouiiieiiieiii et eee e e et e e e e e e e e eeea e e =113 -
3.4.5 The LL(1) Input File DIfferencescoceeeeeeeeeieeiieeeeiiiiiiiiiieeennn -114 -
3.5 INPUT FILE ERROR HANDLINGueiiiiiieeiiiieeseieesiie e et et eesieeeeneeeeneeeen -114 -
3.5.1 Semantic Errors and Warnings.........cccccceueevvemiimmiiiiieieieneeeeeeeen -114 -
G Tt 0t AT = g 411 o L PSP -114 -
5. 1.2 EITOIS oottt ettt ee e -115 -
3.5.2 SYNLACHIC EITOIS ..vvviiiiiiiee e -.116 -
3.6 SYNTACTIC ANALYZER GENERATOR FRONT-END (SAG-FE)ccovvernnnnnenn. -117 -
3.6.1 Scanning the INPUt File ... 17-
3.6.1.1 Reserved KeYWOordscccccceiiieereeeeeeeeeeeeeeeeeeeeeeeeeeeeneeeneeeeenn 2 117 -
3.6.1.2 Macro Representation of Other Tokens............cccoovveviiiieiiieennnn. -118 -
3.6.1.3 Data Structure for SCanNiNg.........ccuueevveviieiiiniiiireeeeee e 118 -
3.6.2 Parsing the INpUt Fileovvvimmmmmee e 119 -
3.6.2.1 Recursive Descent Parser Generator CEG.eeevvvvvevviiiiiiiiieeennnn. -119 -
3.6.2.2 LL(1) Parser Generator CFGcuuuurriiimiiimiiiniiinnninnneinnnnnns - 120
3.6.2.3 The Tree Data Structure..........ccccceeeeeeeeieieeeieeieeieeeeeeeee 2121 -
3.6.2.4 Building an Optimized SyntaxX-Treeccccccccvvevvemmmememnennnnnnnnnnnns -124 -

3.6.2.5 Syntax Error Detectionccccccceeeeeeeeeeieeeien. 2130 -

3.7 SYNTACTIC ANALYZER GENERATOR BACK-END (SAG-BE)cccceoiiiiiiiinnn. -131-

3.7.1 Code Generation Internals - RD Parser Germrat..................... -131 -
3.7.2 Code Generation Internals — LL(1) Parser Gat@ - 133 -
BB HELPER TOOLS ...eciiitiie e e ettt ettt ettt e e e e e e et e e e e e aaaee s -136 -
3.8.1 Left Recursion Removalccccoooeeeiieiiiiiiieee e - 136
3.8.1.1 ThE INPUL....ueiiiiii e eemeee e eneenes -136 -
3.8.1.2The QUIPUL ... -136 -
3.8.1.3 ThE PrOCESSttuiiii i eieeiiceeeee e e et e et e e e e eeveennns -137 -
3.8.1.4 Generating the OUtpUt File......... oo, 140 -
3.8.2 Left Factoring TOOol ..o 142 -
G C 20t R I V<] o -142 -
3.8.2.2The QUIPUL ... -142 -
3.8.2.3 T PrOCESS ...ccooevieeeiieeeeeeetteeeeeeee ettt e e -143 -

PART III: CONCLUSION AND FUTURE WORK

1 LEXCELLENT ..t e e e e e e e e e s s e e e e e e e mmm e e s e s e e e e e e mmmmme e e e e e eeennes - 146 -
1.1 SUMMARY ..ttt e e e e et e e e e e e e e e e e e e e - 146 -
1.2 FUTURE WORK.....cttiiiiiiiiit ettt ettt a e e e e e - 147 -

2. PARSPRINGcuuuuuuuuunnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnsnsnnnnnsnssnnnnnnnnnnnnnsnnnnnnnnes -148 -
2.1 SUMMARY ...ttt e ettt e e e e et e e e e e e e e et e e e e e e e e r e e e e e e e e e -148 -
2.2 FUTURE WORKcctiiii ettt et e et e e e e e e eeans -148 -

3. THE GENERAL CONCLUSIONccvverererererernnnensnsnsenennsessnnsnsnsnnnssssssssnnnnes - 149 -

REFERENCEScoiiiiiiiiiiie ettt e e e e e e e e e e e e -150 -
BOOKS ..ttt ettt ettt ettt ettt s et s et n ettt s et n e -150 -
URLS ...ttt ettt ettt ettt a ettt s et et n st ne e - 150 -

APPENDICES

AL USER'S MANUAL ... s -153 -

B. TOOLS AND TECHNOLOGIESccceiiiiiiiiieieiiieieieeeeeeeesseeeeeseeeeesesasseeseeeas - 166 -

O €10 177 = A 278 -167 -

List Of Illlustrations

Tables

TABLE II-1: CONFIGURABLE OPTIONS IN TOP FILE DEFINITION SECTION............ -50-
TABLE II-2: ToP FILE DEFINITION — USER-DEFINED-CODE PLACEMENT -53-
TABLE II-3: CLASS DEFINITION — USER-DEFINED-CODE PLACEMENT -53-
TABLE Il-4: REGULAR EXPRESSION PATTERNSccoiviiieieiiiiiieeeeeiieeeeeeeaee e -54 -

TABLE II-5: EXTENDED DEFINITIONS (1) — USER-DEFINED-CODE PLACEMENT ...- 56 -

TABLE |I-6: EXTENDED DEFINITIONS (2) — USER-DEFINED-CODE PLACEMENT ...- 56 -

TABLE II-7: REGULAR EXPRESSION CONTEXT-FREE GRAMMAR..........ccceennnnnn.. -65-
TABLE [1-8: CODESTREAM CLASS DATA MEMBERSccovvvviiiieeeeeeeeeeiiineeee e -83-
TABLE [1-9: CODESTREAM CLASS METHODSuiiiiiiiiiieiiiiieee e -83-
TABLE [1-10: LEXICAL ANALYZER CLASS CONSTANTSccvvviiiieeeeeeeeeeeriiieeee e -86 -
TABLE I1-11: LEXICAL ANALYZER CLASS DATA MEMBERSccevvvvieeeeeiiieeees - 87 -
TABLE 11-12: LEXICAL ANALYZER CLASS METHODSuoieviiiiieeeeeiieeeeeeeieeee e - 87 -
TABLE Ill1-1: MACRO REPRESENTATION OF TOKENScccvviieeeiiiiieeeeeeie e, -118 -

TABLE A-1: MAIN TOOLBAR DETAILS . cneeeeee e -167 -

Example Tables

EXTAB 2-1: RESERVED WORDS AND SYMBOLSuueueeee e

EXTAB 2-2: EXAMPLES OF NONTOKENS

EXTAB 2-3: EXAMPLE REGULAR EXPRESSIONS ...cuiinieieee e

EXTAB 2-4: OPERATORS OF REGULAR EXPRESSIONSucniiieeeeeeeeieeeaeeeeeeaaenns

EXTAB 2-5: MORE EXAMPLES ON REGULAR EXPRESSIONS.....ucuieeiieeieeaeaeaaenns

EXTAB 2-6A:
EXTAB 2-6B:
EXTAB 2-6C:
EXTAB 2-7A:
EXTAB 2-78B:
EXTAB 2-8A:
EXTAB 2-8B:
EXTAB 2-8c:
EXTAB 2-8D:
EXTAB 2-8E:
EXTAB 2-8F:

DFA STATE TABLE
DFA STATE TABLE
DFA STATE TABLE...........
DFA NEXT-STATE TABLE.
DFA NEXT-STATE TABLE.

DFA TRANSITION MATRIX
DFA TRANSITION MATRIX
DFA TRANSITION MATRIX
DFA TRANSITION MATRIX
DFA TRANSITION MATRIX
DFA TRANSITION MATRIX

Figures

FIGURE |-1: THE COMPILER, ABSTRACTLY ...etiiiiiiiieieieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee s -13-
FIGURE I-2: THE COMPILER CONSTRUCTION PROCESScceeviiiiiiiiiiieeeeeeeeeee -16 -
FIGURE I-3: INTERMEDIATE REPRESENTIONiiiiiiiiiiiiiiae e e eeeeeeeeiean e e e eeeeeee -17 -
FIGURE I-4: THE WHOLE PICTUREcoiiiiiiiiiee e eeeeeeeiiee e e et eeeeeeeees -18 -
FIGURE Il-1: THE GENERAL ARCHITECTUREeeieieeieitiiaaeeeeeeeeeeeinnnaaeeeeeeeeeees -35-
FIGURE II-2: LEXCELLENT AND PARSPRING — THE MAIN COMPONENTS............. -37 -
FIGURE 11-3: LEXCELLENT — THE PROCESSccciiiiiiieeiiiiieeeeeiiiee e e eneaeee e -45 -
FIGURE Il-4: LEXCELLENT — THE FORMAT OF THE INPUT FILEccccvuvieeeeneee. -49-
FIGURE I1-5: NFA FOR A ONE-SYMBOL REGEX........cciiviiiiiiiiiiiiiiiiiiiieieeeeeeee -66 -
FIGURE 11-6: NFA FOR TWO ORED REGEX'S........covviiiiiiiiieeeceee e -66 -
FIGURE II-7A: NFA FOR TwO CONCATENATED REGEX'Sccoviiiiiiiiieeiee, -66 -
FIGURE II-7B: NFA FOR TwO CONCATENATED REGEX'Sccovviiiiiiiieiee, -66 -
FIGURE I1-8: NFA FOR A REGEX CLOSURE........ceiiiiiiiiiiiee e -67 -
FIGURE 11-9: NFA FOR THE EMPTY WORDciiiiiiiiiiiiiee e -67 -
FIGURE I1-10: NFA FOR A REGEX POSITIVE CLOSUREcccevvviieiieiiieeeeeeeeeeee -67 -
FIGURE I1-11: NFA FOR AN OPTIONAL REGEXccciiiiiiiiiiiiieiiieeeeeieeeeeeeeeeeee -68 -
FIGURE II-12A: CLASS DIAGRAM FOR THE COMPRESSED DFAcooovviiiieee. -77 -
FIGURE I1-12B: CLASS DIAGRAM FOR THE COMPRESSED DFAccovviiiieeen. -80-
FIGURE 11-13: THE DRIVER FLOWCHARTcciiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeee e -85-
FIGURE 11-14: REGEXASAGTG ... -88 -
FIGURE 1l-15: THE "C-COMMENT" REGULAR LANGUAGE.......ccceveiiiiiiaeeeeeeeeeens -89-
FIGURE II-16: THE "EVEN-EVEN" REGULAR LANGUAGEcceveeeiiiiieee e -90-
FIGURE I1l-1: PARSER-LEXER INTERACTIONeeetieeieiiiiiaeeeeeeeeeeeiiiaeeeeeeeeeeee -99-
FIGURE Ill-2: ARCHITECTURE OF A TABLE-BASED TOP-DOWN PARSER........... -107 -
FIGURE Ill-3: PARSPRING — THE SYNTAX OF THE INPUT FILE ..cccovviiiieiiiieeee. -111 -
FIGURE Ill-4: THE PARSER GENERATOR FRONT-ENDcccovviiiiiiiiiiiiiiiieeeee, -117 -

FIGURE Ill-5: RD PARSER GENERATOR CODE GENERATION CLASS DIAGRAM. - 136 -
FIGURE Ill-6: LL1 PARSER GENERATOR CODE GENERATION CLASS DIAGRAM - 138 -
FIGURE I1l-7: SYNTAX ANALYZER HELPER TOOLSccevviiiiiieeeeeeeeeeeiie e -139-
FIGURE I1l-8: LEFT-RECURSION-REMOVAL TOOL ...ccevviiiiiiiieee e -140 -
FIGURE I11-9: LEFT-FACTORING TOOL ..ceeiiiiiiiiieeeeeeeeeeiie e -145 -

Example Figures

EXFIG 2-1: AN EXAMPLE DFA ..o -43 -
EXFIG 2-2: AN EXAMPLE NFA L. e e -44 -
EXFI1G 2-3: AN EXAMPLE NFA WITH E-TRANSITIONSuuiiieeeeeeeeeiiiiie e e e eeeeeees -44 -
EXFIG 2-4: NFA OF THE REGEX (AB C) ceeviiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e -68 -
EXFIG 2-5: REDUNDANT OR AVOIDANCEitiieiieeeiiiniaaeeeeeeeeeeannnaaaeeeeeeeeeeees -68 -
EXFIG 2-6: NFA FOR (A ™ | B) coieeieeiiiieeiiee e ettt e e e e e et e e e e e eeenees -70-
EXFIG 2-7: THE FINAL DFA .o -72-
EXFIG 2-8: IDENTIFIER NFA ... -73-
EXFIG 2-9: IDENTIFIER DFA — THE TRADITIONAL ALGORITHMocvveeiiiieeeeennnee. -73-
EXFIG 2-10: IDENTIFIER DFA — THE ENHANCED ALGORITHMcceeeiiiiieeenneee. -74 -
EXFI1G 2-11: A TRANSITION MATRIX SUITABLE FOR COMPRESSION..........cccu..... -77 -
EXFIG 2-12: REDUNDANCY REMOVAL COMPRESSIONcceeeeeeeeeiiinniaeeeeeeeeeeens -78-
EXFIG 2-13: PAIRS COMPRESSION ...cceiiiiiiiaaeeeeeeeeeinnnaaaeeeeeeeeeennnnaaaaaeeeaaeeeees -79-
EXFIG 2-14: EXAMPLE GTG ..eiiii e eeeeeeees -88 -
EXFIG 2-15A: CONVERTING THE "C-COMMENT" REGEX TO THE CORRESPONDING

(G L C SRRSO -91-
EXFIG 2-15B: CONVERTING THE "C-COMMENT" REGEX TO THE CORRESPONDING

(G L C SRRSO -92-
EXFIG 2-15C: CONVERTING THE "C-COMMENT" REGEX TO THE CORRESPONDING

(G € OSSO URRRRRORRR -92-
EXFIG 2-15D: CONVERTING THE "C-COMMENT" REGEX TO THE CORRESPONDING

(G C OSSO URRRRRORRR -92-
EXFIG 2-15E: CONVERTING THE "C-COMMENT" REGEX TO THE CORRESPONDING

(G € OSSO URRRRRORIR -92-
EXFIG 2-16: THE GUI OF THE GTG EDITOR — STATES ...cciiiiiiiiiieeeeeeeeeeeeeeeee -93-
EXFIG 2-17: THE GUI OF THE GTG EDITOR —EDGES.......ccovvvviiiieiiiiiiieeeeeee -94 -
EXFIG 2-18: FINDING THE ENDPOINTS OF AN EDGE.......cccovvviiiiiiiiiiieeeieeeeeeee -94 -
EXFIG 2-19A: THE EDGE-CLICKING PROBLEMccceiiiiiiiiieeieeeeeeeeeeeeeeeeeeeeeeeee -96 -
EXFIG 2-19B: THE EDGE-CLICKING PROBLEMcceviiiiiiieeeeeeeeeeiiiiae e e eeeeeeeee -96 -
EXFIG 2-19C: THE EDGE-CLICKING PROBLEMccciuiiiiiaeeeeeeeeeiiiiae e e e eeeeeeees -97 -

EXFIG 3-1: SYNTAX TREE ... ceee et e e -101 -

D Part I 7

A General Introduction

1. Basic Concepts

1.1 Definition

A compiler is a program that reads a program wriite one language — trsource
language — and translates it into an equivalengrara in another language — the
targetlanguage. It can be simply stated alternativélstt & compiler is a program that
produces itself as an output if it were fed itselfan input!

Source Language——» @@WD[@W@T - Target Language

’

Error Messages

Figure I-1: The Compiler, Abstractly

1.2 Historical Background

Compilers have been used since the very beginringventing the computers, and
have taken several shapes with varying ranges wiptExity. Primarily, they were
invented to facilitate writing programs, because tnly language that a computer
comprehends — the binary language (mere zeroes omed) — are extremely
unreadable by humans, and early programmers exieei®@ndous efforts just writing
the simplest of programs we run today.

Early computers did not use compilers; because tiaelyjust a few opcodes and a
confined amount of memory. Users had to enter himaachine code directly by
toggling switches on the computer console/frontghan

During the 1940s, programmers found that the tedimachine code could be denoted
using some mnemonics (assembly language) and cemspabuld translate those
mnemonics into machine code. The primitive compdssembleremerged.

During the 1950s, machine-dependent assembly lgeguaere still found not to be
that ideal for programmers; and high level, machmt®Ependent programming
languages evolved. Subsequently, several experaneopilers were developed (for
example, the seminal work by Grace Hopp&9] on the A-O language), but the
FORTRAN team led by John Backus at IBM is generaltedited as having

introduced the first complete compiler in 1957. @dyears later, COBOL — an early
language to be compiled on multiple architecturesterged39].

The idea of compilation quickly caught on, and maofthe principles of compiler
design were developed during the 1960s.

Programming languages emerged as a compromise dretive needs of humans and
the needs of machines. With the evolution of progreng languages and the

increasing power of computers, compilers are beagmiore and more complex to
bridge the gap between problem-solving modern @mogning languages and the
various computer systems, aiming at getting thédsg performance out of the target
machines.

Early compilers were written in assembly langudgee firstself-hosting compilefa
compiler capable of compiling its own source codeai high-level language) was
created for Lisp by Hart and Levin at MIT in 196Ze use of high-level languages
for writing compilers gained added impetus in tlaelye 1970s when Pascal and C
compilers were written in their own languages. 8inid) a self-hosting compiler is a
bootstrapping problerfiL] — the first such compiler for a language must tmled
either by a compiler written in a different langea@r (as in Hart and Levin's Lisp
compiler) compiled by running the compiler on aterpreter.

1.3 Feasibility of Automating the Compiler Construction Process

Compiler writing is a very complex process that ngpgrogramming languages,
machine architectures, language theory, algorithamsl software engineering.
Although a few people are likely to build or evemintain a compiler for a major
programming language, the ideas and techniques tlsedighout the compiler
writing process (or the compiler construction psse- Il use the two terms
interchangeably) are widely applicable to geneoétinsare design.

May be the first question that may come into thedez's mind is: Do we have a new
programming language every day? Programming lareguaghough numerous — are
limited to a few hundreds, most of which are algeathning and whose compilers
have been well-tested and optimized... so why do gexirto automate the compiler
construction process? And is it worth the efford éime exerted doing that?

The following address these — and other questiomegarding the feasibility of
automating the compiler construction process, teast, some of its phasigy:

(1) The systematic nature of some of its phases.

The variety of compilers may appear overwhelmingeré are hundreds of source
languages, ranging from traditional programmingglaages to specialized languages
(that have arisen in virtually every area of comepupplication). Target languages
are equally as varied; a target language may b#hanprogramming language or the
machine language of any computer between a mictepsor and a supercomputer.
Despite this apparent complexity, the basic takks any compiler must perform are
essentially the same. By understanding these taskgan construct compilers for a
wide variety of source languages and target mashinging the same basic

techniques, and thus many phases of the compil@ste@tion process are

automatable.

(2)The extreme difficulty encountered in implementandull-fledged
compiler.

The first FORTRAN compiler — for example — took st8ff-years to implement.

(3)The need for compilers in various applications, naty compiler-
related issues.

The string matching techniques for building lexieaklyzers have also been used in
text editors, information retrieval systems, anttgya recognition programs. Context-
free grammars and syntax-directed definitions hlagen used to build many little
languages; such as the typesetting and figure doasystems used in editing books.

In more general terms, thanalysis portion (described shortly) in each of the
following examples is similar to that of a convental compilelf2]:

. Text FormattersA text formatter takes its input as a stream ddrahters,
most of which is text to be typeset, but some oiciwvhiinclude commands
to indicate paragraphs, figures or mathematicaictires like subscripts
and superscripts.

[I. Silicon Compilers:A silicon compiler has a source language thatnslar
or identical to a conventional programming languag®wever, the
variables of the language represent not locationsi@émory, but logical
signals (0 or 1) or groups of signals in a switghaircuit. The output is a
circuit design in an appropriate language.

lll. Query Interpreters:A query interpreter translates a predicate coirtgin
relational and Boolean operators into commandsstoch a database for
records satisfying that predicate.

IV. XML Parsers:The role of XML in modern database applications'tcha
overestimated.

V. Converting Legacy Data into XMIEor updating legacy systems. This is an
extremely important application for large, old cargtions with much data
that can't be lost when switching to newer systems.

VI. Internet BrowsersThis is one of the interesting applications thauass the
fact that the output of the process is not necigsanseen”. In internet
browsers; the output is drawn to the screen.

VII. Parsing structured files:This is the most practical and widely used
application of parsers. Virtually any applicatioreds to take its input
from a file. Once the structure of such a file pedfied, a tool like ours
can be used to construct a parser easily (alony aviyy parallel activity,
such as loading the contents of the file into meg/maor a suitable data
structure.

VIII. Circuit burning applications using HDL specificatis: This is another
example from the world of hardware.

IX. Checking spelling and grammar mistakes in word pssing applications:
This is very common in commercial packages, likergisoft Word®. The
importance of such an application stems from savhwey great efforts
exerted when revising large, formal documents.

2. The Compiler Construction Lifecycle

Source Program

Lexical Analysis \ FrontEnc

A 4
Syntactic Analysis

A 4
Semantic Analysis

A\ 4
Intermediate Code Generatid

BuljpueH 10413

Code Optimization

A\ 4
Code Generation

l

Target Program

Back Enc\

Figure I-2: The Compiler Construction Process

2.1 Front and Back Ends

Often, the phases (described shortly) are collegteda front end and a back end.

The front end consists of those phases, or pagphades, which depend primarily on
the source language and are largely independentheftarget machine. These

normally include lexical and syntactic analysise ttreation of the symbol table,
semantic analysis, and the generation of interntediade. A certain amount of code
optimization can be done by the front end as wite front end also includes the

error handling that goes along with each of théweses.

I ntermediate Representation: A More-Than-Justified Overhead

It has become fairly routine to take the front efich compiler and redo its associated
back end to produce a compiler for the same sdanggiage on a different machine.

If the back end is designed carefully, it may ne¢re be necessary to redesign too
much of the back end. It is also tempting to compiveral different languages into
the same intermediate language and use a commdnebacfor the different front
ends, thereby obtaining several compilers for oaehime.

Software design experience has mandated tiddenever you're in trouble, add an
extra layer of abstraction"Let's start with an abstract figure that illustsatinis
concept with no technical details:

Source 1 Source 2 Source 3 Source 4
Y, Y, Y, \/
Target 1 Target 2 Target 3 Target 4
Source 1 Source 2 Source 3 Source 4

Intermediate Form

Target 1 Target 2 Target 3 Target 4

Figure I-3: Intermediate Representation

The figure illustrates the problem we are facingafintermediate form were
used. We have to redesign the back-ends for eveny-énd and vice versa. In
summary, the advantages of using an intermediat@; favhich more than

offsets the extra processing layer — and the pmdace degradation
accordingly — include:

(1) The presence of an intermediate layer reduces uh#er of "links" in
the figure from N to 2*N. Note that each "link" is a complete corepil

(2) The optimization phase can be dedicated to opthgizhe "standard"
intermediate format. This raises the efficiencythed optimization phase
and reduces its time and effort as the researaeases in this area,
where certain phases of the optimization phasdeaautomated as well.

(3) Portability and machine-independence in source uaggs can be
achieved easily, where the back-ends are realinatifterent platforms.

This approach is widely adopted nowadays; commamgikes include
Java™ and .NET-Compliant languages.

Now it's time to view the situation realistically:

Language 1 source code

T

Compiler f_ront-end for language 1
Lexical Analyzer (Scanner)

Syntax/Semantic
Analyzer (Parser)

Intermediate-code
Generator

Mon-optimized
Intermediate Cod

N\

.

Larmguage 2 source code

Compiler front-end for language 2

Lexical Analyzer (Scanner)

Syntax/Semantic
Analyzer (Parser)

Intermediate-code
Generator

on-gptimized

]
/ntermediate Code

Intermediate-code
Optimizer

Optimized
Intermediate Code

Target-1
Code Generator

Target-2
Code Generator

¢ Target-1 machine code

Figure 1-4: The Whol

& Target-Z2 machine code

e Picture

2.2 Breaking down the Whole Process into Phases

Conceptually, a compiler operates phases
program from one representation to anothe

each of which transforms the source
r. Therdéveo main categories of phases:

analysisand synthesis Another category, which we prefer to nafimeeta-phases”
will be described shortly. The analysis part breaigs the source program into

constituent parts and creates an intermedi

ate geptation of it. The synthesis part

constructs the desired target program from thernmddiate representation.

2.2.1 The Analysis Phases

2.2.1.1 Linear (Lexical) Analysis

The stream of characters making up the source @nogg read in a linear fashion (in
one direction, according to the language) and grduinto tokens— sequences of
characters having a collective meanj8j

In addition to its role as an "input reader"”, aidak analyzer usually handles some
"housekeeping chores" that simplify the remainihgges — especially the subsequent
phase; parsinf?]:

White space elimination:

Many languages allow "whitespace" (blanks, tabsl maewlines) to appear between
tokens. Comments can likewise be ignored by thegpaas well as the translator, so
they may also be treated as white space.

Matching tokens with more than a single character:

The character sequence forming a token is calletekemefor the token. Normally,
the lexemes of most tokens will consist of morentlaa character. For example,
anytime a single digit appears in an expressiorsegms reasonable to allow an
arbitrary integer constant in its place. So thdclixanalysis phase can't be simply
reading the input character by character (excepéeimg special cases). In other words,
thecharacter stream is usually different than ttaken stream.

Correlating error handling information with the teks:

The lexical analyzer may keep track of the numlbereavline characters seen, so that
a line number can be associated with an error rgessa

Efficiency issues:

Since the lexical analyzer is the only phase of ¢bmpiler that reads the source
program character-by-character, it is possiblepgnd a considerable amount of time
in the lexical analysis phase, even though ther lpteses are conceptually more
complex. Thus, the speed of lexical analysis isr&cern in compiler desigi2].

Isolating anomalies associated with different encgdormats:

Input alphabet peculiarities and other device-dmeanomalies can be restricted to
the lexical analyzer. The representation of spemialon-standard symbols, suchtas
in Pascal, can be isolated in the lexical analyzer.

There is much more stuff the lexical analyzer candte, according to the specific
implementation at hand. The lexical analysis phiggether with the parsing phase, is
actually our concern. For that we defer a detadlescription of both to two dedicated
chapters, in part Il of this document. Consult igect6 in this part for more
information about the document organization.

2.2.1.2 Hierarchical (Syntactic) Analysis

It involves grouping the tokens of the source paoginto grammatical phrases that
are used by the compiler to synthesize output. &hars or tokens are grouped
hierarchically into nested collections with coligetmeaning; these nested collections
are what we caltatements

For any context-free grammar there is a parsert#thas at mosD(n®) time to parse a
string ofn tokens[2]. However, this is very expensive when we engatgepractical
applications. So, researchers have exerted inensfforts to find "smarter"
techniques for parsing.

Most practical parsing methods fall into one of telasses, called thep-downand
bottom-upmethods. These terms refer to the order in whettes in the parse tree are
constructedIn the former, construction starts at the root @noceeds towards the
leaves, while in the latter, construction startshat leaves and proceeds towards the
root. (A parse tree is a visual representation of therdmichical structure of a
language statement, in which the levels in the degact the depth and breadth of the
hierarchy. We will have more to say about differtgpes of trees later)

The popularity of top-down parsers is due to thet that efficient parsers can be
constructed more easily by hand using top-down austh Bottom-up parsing,
however, can handle a larger class of grammargrandlation schemes.

Lexical Analysisvs. Parsing

I. The Rationale behind Separation

There are several reasons for separating the @algase of compiling into lexical
analysis and parsing, the most important of whrel{4:

1. Simpler design is perhaps the most important caideration. The separation of
lexical analysis from syntactic analysis oftenabous to simplify one or the other of
these phases. For example, a parser embodyingotheertions for comments and
whitespace is significantly more complex than onat ttan assume comments and
whitespace have already been removed by a lexiayzer. If we are designing a
new language, separating the lexical and syntacinventions can lead to a cleaner
overall language design.

2. Compiler efficiency is improved. A separate lexical analyzer allows us to
construct a specialized and potentially a morecieffit processor for the task. A huge
amount of time is spent reading the source prograch partitioning it into tokens.
Specialized buffering techniques for reading inpléracters and processing tokens
can significantly speed up the performance of apt@n

3. Compiler portability is enhanced.Input alphabet peculiarities and other device-
specific anomalies can be restricted to the lexaralyzer. The representation of
special or non-standard symbols, suchf as Pascal, can be isolated in the lexical
analyzer.

4. Specialized tools have been designed to help awiate the construction of
lexical analyzers and parsers when they are sepaeat. These tools are actually the

core of CCW, more about their importance, detailsl anput specifications are
presented in the relevant chapters later in themeat.

[I. A Special Relation?

The division between lexical and syntactic analysisomewhat arbitrary. One factor
in determining the division is whether a sourceglaage construct is inherently
recursive or not. Lexical constructs do not requieeursion, while syntactic
constructs often do. The lexical analyzer and taesqr form gproducer-consumer
pair. The lexical analyzer produces tokens andptirser consumes them. Produced
tokens can be held in a token buffer until theyamesumed. The interaction between
the two is constrained only by the size of the éyfbecause the lexical analyzer
cannot proceed when the buffer is full and the gracannot proceed when the buffer
is empty. Commonly, the buffer holds just one toKerthis case, the interaction can
be implemented simply by making the lexical anaiylze a procedure called by the
parser, returning tokens on demand.

2.2.1.3 Semantic Analysis

Certain checks are performed to ensure that thgpoonents of a program fit together
meaningfully. The semantic analysis phase chedsstiurce program for semantic
errors and gathers type information for the subsetjaode-generation phase. It uses
the hierarchical structure determined by the syat@lysis phase to identify the
operators and operands of expressions and statement

2.2.2 The Synthesis Phases

2.2.2.1 Intermediate Code Generation

After syntax and semantic analysis, some compgderserate an explicit intermediate
representation of the source program. We can thiitkis intermediate representation
as an assembly program for an abstract machine.

2.2.2.2 Code Optimization

The code optimization phase attempts to improvertteemediate code, so that faster-
running machine code will result. There is a gneatation in the amount of code
optimization different compilers perform. In thodskat do the most — called
"optimizing compilers" — a significant fraction tife compilation time is spent on this
phase. However, there are simple optimizationsdigaificantly improve the running
time of the target program without slowing down tbempilation performance
noticeably.

2.2.2.3 Final Code Generation

Memory locations are selected for each of the béeggused by the program. Then,
intermediate instructions are each translated ansequence of machine instructions
that perform the same task. A crucial aspect issgnment of variables to registers,

since the intermediate code is the same for atfqrlas and machines and should not
be dedicated to a specific one.

2.2.3 Meta-Phases

2.2.3.1 Symbol-Table Management

An essential function of a compiler is to recore tidentifiers used in the source
program and collect information about various httres of each identifier. These
attributes may provide information about the sterafjocated for an identifier, its
type, its scope (where in the program it is valadgd — in the case of procedure names
— such things as the number and types of its argtanthe method of passing each
argument (e.g. by reference), and the type retuihady.

A symbol tables a data structure containing a record for edelntifier, with fields
for the attributes of the identifier. The data stane allows us to find the record for
each identifier and to store or retrieve data fitsmecord quickly.

2.2.3.2 Error Handling

Each phase can encounter errors. However, aftecti®gy an error, a phase must
somehow deal with that error, so that the compitatan proceed, allowing further
errors in the source program to be detected. A demihat stops when it finds the
first error is not as helpful as it could be.

The syntax and semantic analysis phases usualtyidhanlarge fraction of the errors

detectable by the compiler. The lexical phase cteal errors where the characters
remaining in the input do not form any token of theguage. Errors where the token
stream violates the structure rules (syntax) of lireguage are determined by the
syntax analysis phase. During semantic analysisdh®piler tries to detect constructs
that have the right syntactic structure but no nmgato the operation involved, e.g., if

we try to add two identifiers, one of which is theme of an array, and the other the
name of a procedure.

3. Problem Definition

3.1 Historical Background

At about the same time that the first compiler wasler development, Noam
Chomsky[50] began his study of the structure of natural langaaddis findings
eventually made the construction of the compilessistderably easier and even
capable of partial automation. Chomsky's studiemd l¢o the classification of
languages according to the complexity of their grears and the power of the
algorithms to recognize thenthe Chomsky Hierarchyas it's now called]51]
consists of four levels of grammars, called theety) type 1, type 2 and type 3
grammars; each of which is a specialization opredecessor. The type 2, @ntext-
free grammars proved to be the most useful for programming leaggs — and today
they are the standard way to represent the steictiprogramming languages. The
study of theparsing problem(the determination of efficient algorithms for the
recognition of context-free languages) was pursaede 1960s and 70s, and lead to a
fairly complete solution of this problem, which tgydhas become a standard part of
compiler theory. Context-free languages and paralggrithms are discussed in the
relevant chapters later in this document.

Closely related to context-free grammars are fiaiteomata and regular expressions,
which correspond to Chomsky's type 3 grammars. rThiidy led to symbolic
methods for expressing the structure of wordddkens$. Finite automata and regular
expressions are discussed in detail in the chaptézxical analysis.

As the parsing problem became well understoodeatgteal of work was devoted to
developing programs that will automate this partcompiler development. These
programs were originally callecbmpiler-compilersbut are more aptly referred to as
parser generatorssince they automate only one part of the comipitgprocess. The
best-known of these program®zcc (Yet Another Compiler-Compiler), was written
by Steve Johnson in 1975 for the UNIX system. Sirhi| the study of finite
automata led to the development of another todédascanner generatorof which
LEX (developed for the UNIX system by Mike Lesk abthg same time a%acc) is
the best known.

During the late 1970s and early 1980s a numberaégts focused on automating the
generation of other parts of compilers, includirgde generation. These attempts
have been less successful, possibly because afothelex nature of the operations
and our less-than-perfect understanding of thenn. éxample, the automatically-
generated semantic analyzers have a general paricendegradation of 1000%!!
(This means that they run ten times slower thanualdyrwritten semantic analyzers).

3.2 Compiler Construction Toolkits: Why?

Is it worth automating the compiler writing procesthe following — very briefly —
discusses the main difficulties a compiler writac@unters when writing a compiler
code manually:

Compiler writing is a complex, error-prone taskttheeds much time and effort.
The resulting (manual) code is usually hard to dedid maintain.

The code walkthrough is hard due to the amounthef written code and the
diversity of the available implementations.

Any small modification in the specification of teempiler results in big changes
to the code, and subsequently to severe perfornmagtegioration on the long run
as the structure of the code is continuously medifi

The class of algorithms that suits manual impleiai@m of compilers is generally
inefficient.

For these and other problems, tremendous reseticcts avere exerted in the 1970s
and 80s to automate some phases of the compiléingvprocess. Following the
"bulletin board" convention used above; the follogvaresomeof the advantages that
a compiler writer gains when using compiler congian tools:

The developer is responsible only for providing #pecifications. No tedious,
repeated work is required; thus avoiding the afemtioned difficulties.

Adopting the most efficient algorithms in its canstion; thus providing the
developer with an easy means to generating efficograms that would
otherwise have been too difficult to implement. Malty-written compilers have
proven to lack the required efficiency and mairdaiiity.

Ease of maintenance. Only the specifications aréetomodified if a desired
amendment is to be introduced.

Providing developers unfamiliar with the compileeory with an access to the
uncountable benefits of using compiler writing teicues in compiler-unrelated
applications.

3.3 Practical Automation of Compiler Writing Phases

The compiler writer, like any programmer, can gadfly use software tools such as
debuggers, version managers, and profilers ... tdeiment a compiler. These may
include:

Structure Editors: A structure editor takes as an input a sequen@®minands
to build a source program. The structure editoramby performs the text-creation
and modification functions of an ordinary text edjtbut it also analyzes the
program text, putting an appropriate hierarchitalcture on the source program.
Thus, the structure editor can perform additioasks such as checking that the
input is correctly formed, supplying keywords augditally (such as supplying a
closing parenthesis for an opened one, or auto-lmimg reserved keywords),
and highlighting certain keywords. Furthermore, theput of such an editor is
often similar to the output of the analysis phaisa compiler; that is — imposing a
certain hierarchical structure on the input program

Pretty Printers: A pretty printer analyzes a program and printsiisuch a way
that the structure of the program becomes cleasiple. For example, comments
may appear in a special font, and statements mpgaapwith an amount of

indentation proportional to the depth of their mestin the hierarchical
organization of the statements.

Both of these tools are implemented in CCW 1.0.

In addition to these software-development toolkeptmore specialized tools have
been developed for helping implement various phas@scompiler. | mention them

briefly in this section; the tools implemented ICW are covered in detail in the
appropriate chapters.

Shortly after the first compilers were written, t®yas to help with the compiler-
writing process appeared. These systems have b#en referred to asompiler-
compilers compiler-generatorsor translation-writing systemsas was discussed in
the historical background above. Largely, theyarented around a particular model
of languages, and they are most suitable for géngreompilers of languages similar
to the model.

For example, it is tempting to assume that lexmadlyzers for all languages are
essentially the same, except for the particulamkegls and signs recognized. Many
compiler-compilers do in fact produce fixed lexi@alalysis routines for use in the
generated compiler. These routines differ onlyhia list of keywords recognized, and
this list is all that's needed to be supplied leyuker.

Some general tools have been created for the atitodwsign of specific compiler
components, these tools use specialized languagespécifying and implementing
the component, and many use algorithms that aree aaphisticated. The most
successful tools are those that hide the detailseofeneration algorithm and produce
components that can be easily integrated into #mwamder of a compiler. The
following is a list of some useful compiler-consttion tools:

|. Parser Generators. These produce syntax analyzers, normally from tithat is
based on a context-free grammar. In early compignstax analysis consumed not
only a large fraction of the running time of a colap but also a large fraction of the
intellectual effort of writing it. This phase is woconsidered one of the easiest to
implement. Many "little languages”, such as PIC d&@N (used in typesetting
books), and any file with a definitive structureene implemented in a few days using
parser generators. Many parser generators utibmeegul parsing algorithms that are
too complex to be carried out by hand.

Il. Scanner Generators. These automatically generate lexical analyzersmatly
from a specification based on regular expressidi® basic organization of the
resulting lexical analyzer is in effect a finitet@onaton — both to be detailed soon.

lll. Syntax-Directed Translation Engines. These produce collections of routines
that walk the parse tree, generating intermediatkecThe basic idea is that one or
more "translations” are associated with each nofléhe parse tree, and each
translation is defined in terms of translationgsaheighbor nodes in the tree.

IV. Automatic Code Generators.Such a tool takes a collection of rules that define
the translation of each operation of the intermedianguage into the machine
language for the target machine.

3.4 Motivation

Among the aforementioned tools, the first two dwe ¢ore of our project. There are a
number of reasons that restricted us to implemgrhese two, the most important of
which are:

* Not all of these tools have gained wide acceptalugeto the lack of efficiency,
standardization and practicality. As mentioned befehe semantic analyzers —
for example — generated automatically are aboutiteas slower than their ad-
hoc counterparts.

* Practical lexical analyzers and parsers are wi@dglglicable to other fields of
application, unrelated to the compiler constructiwocess. Page 8 contains some
of the applications a parser (together with itsdakanalyzer) can be useful in.

* The available lexical analyzers and parsers — thougmerous — share some
drawbacks discussed in details in the next chaptethe market survey. We
decided to implement a tool that — as much asithe limit permits — avoid these
drawbacks.

4. Related Work

We have performed a survey on the currently aviglabmpiler construction toolkits.
It was found that the most significant tools ava#aare ££x and Yacc. However,
numerous tools exist. Many of the disadvantageg®f and Yacc were solved by
other tools. However, so far no single tool haselall of the problems normally
encountered in such products. We are going to tigate some of them here:

4.1 Scanner Generators - LEX

As previously stated, lexical analyzer generatoaket as input the lexical
specifications of the source language and genetiage corresponding lexical
analyzers. Different generator programs have differinput formats and vary in
power and use. We shall describe hefex, which is one of the most powerful and
widely used lexical analyzer generatotgx was the first lexical analyzer generator
based on regular expressions. It is still widelgdudt is the standard lexical analyzer
(scanner) generator on UNIX systems, and is indudehe POSIX standard.

LEX reads the given input files, or its standard inpub file names are given, for a
description of a scanner to be generated. Therigdea is in the form of pairs of

regular expressions and C code, called rules. Alfi@;, L£X generates as output a C
source file that implements the lexical analyzerisTile is compiled and linked to

produce an executable. When the executable is ituapalyzes its input for

occurrences of the regular expressions. Whendvéinds one, it executes the
corresponding C code.

Some Disadvantages 6fFX

We have examined#x from several perspectives and finally we were ébldecide
the following drawbacks in it:

0 The generated code is very complex and completelgadable. Consequently, its
maintainability is low.

o0 The generated lexical analyzer can be generatgdiothe C language (Another
version of LEX has been developed to support object oriented co@e+, but it
is still under testing).

There is only one DFA compression technique utilize

There is no clear interface between the scanneulaa@hd the application that is
going to use the module.

It doesn't support Unicode, so the only supporadliage is English.

Some of the header files used by the generatedhacane restricted to the UNIX
OS. Thus, its portability is low.

o Itlacks a graphical user interface.

4.2 Parser Generators — Yacc

Syntactic analyzer generators take as an inpusythiactic specifications of the target
language — in the form of grammar rules — and g#adhe corresponding parsers. It
holds for automated parser generation as welldtisgrent generator programs have
different input formats and vary in power and udewever, the variation here is
more acute due to the different types of parseas mhight be generated (top-down
parsers vs. bottom-up parsers). We shall descebeYacc, which is one of the most
powerful and widely used parser generators. Indeed;and Yacc were designed so
that seamless effort is exerted in order to intiegtlae generated lexical analyzer and
the generated parser.

Yacc (Yet Another Compiler Compileiis a general-purpose parser generator that
converts a grammar description for an LALR(1) catffeee grammar into a C
program to parse that grammaticc is considered to be the standard parser generator
on UNIX systems. It generates a parser based oramngar written in the BNF
notation.%Yacc generates the code for the parser in the C pragmagilanguage.

Some Disadvantages oficc

The disadvantages dfzcc are almost the same as the disadvantageg.of They are
repeated here for convenience:

0 The generated code is very complex and completelgadable. Consequently, its
maintainability is low.

o The generated parser can be generated only in thlo@amming language
(Another version ofYacc has been developed to support object oriented oode
C++, but it is still under testing).

o0 There is only one type of parsers that may be géeerwhich is the LALR(1)
bottom-up parser.

o0 There is no clear interface between the parser facghd the application that is
going to use the module.

o0 Some of the header files used by the generate@rmars restricted to the UNIX
OS. Thus, its portability is low.

o It lacks a graphical user interface.

4.3 Flex and Bison

LEX and Yacc have been replaced by Flex and Bison and, moentigc Flex++ and

Bison++. Such enhancements have solved the probdérpsrtability and provided

the user with a means to generate object orierdnrgpiters in C++ but still the rest of
the drawbacks remain.

4.4 Other Tools

Other thanz&x and Yacc, we will make a brief survey on the available saind
packages related to our product together with tewbacks. The referenci —
[30] are used in this section. We preferred not tachtevery reference to its program
to avoid cluttering this page.

ANTLR

o Only the recursive descent parsing technique ipated.
o It has no graphical user interface.
o It has some problems with Unicode.

Coco/R

0 The only parsing technique available is the LL ¢dbhsed parsing technique.
o0 It doesn’t support Unicode.
o0 There is no graphical user interface.

Spirit
0 The only output language supported is C++.
Only the recursive descent parsing technique ipatied.
There is no graphical user interface.
It doesn't support Unicode.
It doesn't provide a scanner generation capability.

o O OO0

Elkhound

The only output languages supported are C++ andhDca
Only the bottom-up table based parsing techniqgepported.
There is no graphical user interface.

It doesn't support Unicode.

It doesn't provide a scanner generation capability.

o

© O OO0

Grammatica

o The only parsing technique used is the recursigeeatd parsing technique.
o There is no graphical user interface.
0 The scanner produced by its scanner generatoefigcient.

LEMON

0 The only output languages available are C and C++.

The only parsing technique is the LALR(1) tabledzhparsing technique.
There is no graphical user interface.

It doesn't provide a scanner generation capability.

It doesn't support Unicode.

© O 0O

SYNTAX

o It works only on the UNIX OS.
o There is no graphical user interface.

o0 The only output language available is C.
o0 Only the LALR(1) table-based parsing techniqueuisported.
0 It doesn't support Unicode.

GOLD

0 Only the LALR(1) table-based parsing techniqueusported.
o Doesn't generate the driver programs (only theegbl
0 There is no graphical user interface.

AnaGram

o0 The only output languages allowed are C and C++.
0 Only the LALR(1) table-based parsing techniqueusported.
o0 It doesn't support Unicode.

SLK

0 Only the LL(k) table-based parsing technique ispsuied.
o0 There is no graphical user interface.

Rie
The only output language available is C.
Only the LR table-based parsing technique is supgor

There is graphical user interface.
It doesn't support Unicode.

© O 0O

Yacc++

0 The only output language available is C++.

o Only the ELR(1) table-based parsing technique jigpetted.
o There is no graphical user interface.

o0 It doesn’t support Unicode.

ProGrammar

0 It uses a separate ActiveX layer which degradefopeance.
o lItis not clear what type of parsing techniquesiést

YaYacc

o The only output language available is C++.

o0 The only parsing technique available is LALR(1)l¢éabased parsing.
o It works only on FreeBSD.

o It doesn't have a graphical user interface.

o0 It doesn't support Unicode.

o0 It doesn’t provide a scanner generation capability.

o The only output language available is C.
0 Only the LALR(1) table-based parsing techniqueuisported.
o It doesn't have a graphical user interface.

PRECC

o The only output language available is C.

o Only the LL table-based parsing technique is sujgglor
o There is no graphical user interface.

0 It doesn't support Unicode.

YAY

The only output language available is C.

Only the LALR(2) table-based parsing techniqueugp®rted.
There is no graphical user interface.

It doesn't support Unicode.

There is scanner generation capability.

O 0O O0OO0Oo

Depot4

o The only output languages available are Java ardDb

o0 The only parsing technique available is recursiegcdnt parsing.
o There is no graphical user interface.

o0 There is no scanner generation capability.

LLGen

The only output language available is C.

Only the ELL(1) table-based parsing technique gosuted.
There is no scanner generation capability.

It doesn't support Unicode.

There is no graphical user interface.

o

o O OO0

LRgen

o Itis designed so that the output is mainly writileC++.
The only parsing technique is LALR(1) table basatsmg.
It is a commercial application.

There is no Unicode support.

There is no graphical user interface.

© O O0Oo

4.5 Conclusion

Most of the available tools don’t provide the cleoamong table-based and recursive
descent parsing. And it is rare to find a tool watlgraphical user interface. Such a
tool is usually a commercial one (i.e., it costetaof money).

Unicode support is also missing in most of thes@alrveyed. Also we can notice that
only a few tools support multilingual code genematiThat is, other than C and C++,
it is not common to find a non-commercial tool thafills your needs.

Some tools do provide a scanner generator bedwdegarser generator, but as we've
just seen; this is not always the case.

5. Our Objective

As it's now obvious from the previous section, ¢here a number of common

drawbacks shared by most of the available prodidtst of the parser generators
implement a single parsing technique, or at most Most of them are mere console
applications, without a user interface. Unicodeugported in a few of them; even
those tools that support Unicode suffer from sorertsomings that make them

generally unpractical. Code generation is usuallypme or two languages. Scanner
generators are sometimes existent, but most often have to implement them

yourself.

So we've decided to develop a tool that overcomest wf these drawbacks. Because
of the time limit, we adopted extensibility as anpipal paradigm, so that — for
example — the LR parsing technique can be intradiuceversion 2.0 easily, even
though version 1.0 currently supports recursiveeelesand LL(1) parsing techniques
only. Unicode is supported in version 1.0, and saiemos are available on the
companion CD illustrating Arabic applications. Codgneration is currently
supported in three languages; namely ANSI C++, @# Java. It's a trivial matter to
add a new language, as will be illustrated in dieiai the chapter on parsing later in
the documentLEXcellent, our lexical analyzer generator, is available upport its
companion®arSpring, the parser generator.

Our interface for integrating the process is CCWor{iler Construction
Workbench), a user friendly interface that suppartest of the nice features
introduced in IDEs, such as syntax highlightingyelinumbers, breakpoints and
matching brackets. More advanced features suclutascampletion are included in
the future work plan. It's expected that versiob i8.to eliminate all the drawbacks
evident in most commercial applications. Currentlrsion 1.0 eliminates about 80%
of them, given the extensible framework it's baggan.

6. Document Organization

After the field and the problem have been introdiicee turn now to briefly
discussing the organization of this document.

Part | — which the reader has probably surveyedrbaktaching this section — mainly
introduces the topic and clarifies the overall miet Chapters 1 and 2 discuss the
basic concepts. The problem is defined preciselghapter 3. A market survey is
carried out in chapter 4, and chapter 5 discusseslgective from implementing our
tool.

Part Il, which is the bulk of this document, is theded essentially to those developers
who will use our tool, together with those inteegsin any implementation details.

Chapter 1 contains mainly a block diagram depicthmgoverall system architecture,
together with a brief discussion of each component.

Chapter 2 is dedicated to the lexical analysis @h&ection 1 is an introduction;
augmenting what was presented in the 'Basic Cosicepapter in Part I. Section 2
introducesLEXcellent; our lexical analyzer generator. Section 3 disesis$s input
stream, and sections 4 and 5 are dedicated topts file format. Sections 6, 7, 8 and
9 illustrate in full details the algorithms useddar implementation foZEXcellent.
Section 10 is dedicated to describing the gener&gntal analyzer. Section 11
describes the graphical GTG editor; which is a &elol used to create regular
expressions easily via a sophisticated graphical inserface.

Chapter 3 is dedicated to the parsing phase. $8clio2 and 3 are introductory; again
augmenting the material presented in Part |. Sestb and 5 are dedicated to the
input file format of ®arSpring, the parser generator. Sections 6 and 7 are pure
implementation details. Finally, two helper toote discussed in section 8.

Part Ill finalizes the document by providing thengeal conclusion; together with a
summary for each tool and its future work plan. ile tools, technologies and
references used in this project are listed. Theeagiges are attached to the end of the
document.

This document may be used by more than one reddgsu are new to the whole
issue, the following sections in Part | are recomdeal for first reading: 1.1, 1.3, 2.1,
2.2,3.1,3.2,3.3, 5, and sections 2.1, 3.1, 8233 in Part II.

If you know what you want to do, and you prefestart using the tool directly; read
the following in Part 1l: 2.4, 2.5, 3.4 and 3.5.c8en 2.10 will be useful also; though
not necessary to get started. Don't forget the msgwal in the appendices.

For using the helper tools, consult sections 2ridl3a8 in Part Il.

Finally, when you're done using the tool, you magnwvto take a look at the
implementation details — and you're welcome to aargnour work. The source code
is provided on the companion CD. Sections 2.3, 2.6, 2.8 and 2.9 discuss in full
details the implementation details f6F Xcellent. Its companion's details are outlined
in sections 3.6 and 3.7.

U Part 11 7

Technical Detalls

1. Architecture and Subsystems

Our Compiler Construction Toolkit consists of seafaromponents that interact with
each other to facilitate the process of compilerettgpment. The general architecture
of the package can be represented in figure II-1:

Integrated Development Environment

Lexical Analyzer Generator Syntactic Analyzer Generator
“scanner generalar” parser ganeralor Helper Tools
TG o Regular
Input File parser Input File parser Exprassion
Converter
Gptimigalion [Mir_lirrizaticrn." L) Recursive Hegrll.::ar IE:-;pressic-n
ompression) Farser Descent Bnipulator
Code Parser
Code .
Generalor Left Factoring/Left
Scanner Code Generator Generator Recursion Removal

Back End

G+ CH Java

Figure lI-1: The General Architecture

While the IDE was developed using the .NET platforatimost all the other
components of the system were developed in native Such combination allowed
us to gain the powerful GUI capabilities of the INEamework without sacrificing
the efficiency and portability of the C++ unmanagede.

The following is a brief investigation of each camnent in the system. Each of these
components is to be fully detailed in a dedicateapter later in the document.

* Integrated Development Environment: It the environment in which the compiler
developer creates and maintains projects, editsfgion files, uses the utilities
and helper tools and invoke the scanner and pgesesrator tools to generate his
compiler.

» Lexical Analyzer Generator: It is the software component that is responsibfte f
generating the lexical analyzer (scanner), givenuser specifications. It consists
of the following general modules:

o0 Input File Parser: This module is responsible for parsing the speations
file that contains the regular definitions of tlekeéns to be returned by the
generated scanner. The regular definitions areartes into an NFA then into

a DFA. More on both later.

0 Optimization (Minimization/Compression): This module is responsible for
optimizing the produced DFA obtained from the poers phase.

o0 Scanner Code Generator: This module is responsible for generating the
source code of the required scanner.

» Syntactic Analyzer Generator: It is the software component that is responsibie f
generating the syntactic analyzer (parser), gihenuser specifications. It consists
of the following general modules:

o Input File Parser: This module is responsible for parsing the spesiibns
file that contains the grammar specifications @ ldinguage to be recognized
by the generated parser. The grammar rules areedeavinto a tree inside the
program memory.

0 LL(1) Parser Code Generator: If the user specifies that the generated parser
should be an LL(1) parser, then this module shasklime responsibility for
generating the parser.

0 Recursive-Descent Parser Code Generator: If the user specifies that the
generated parser should be a recursive-descerr ptrsn this module should
assume responsibility for generating the parser.

* Helper Tools. A set of tools that facilitates the process of twg the
specifications of the desired scanner and par$ey &re mainly invoked from the
IDE.

0 GTG to Regular Expression Converter: A tool that gives the developer the
capability to specify his regular definition in tes of aGeneralized Transition
Graphinstead of a regular expression. This may be easgome cases.

0 Regular Expression Manipulator: A tool that allows the developer to
generate new regular expressions from the unidarsection or negation of
input regular expressions.

0 Left Factoring/Left Recursion Removal: A tool that performs left factoring
and left recursion removal on a given CFG, whiahtaro essential operations
that must be performed if a recursive-descent passt be generated. Such
facility frees the developer from doing all thatoef manually.

* Back End: It is the set of classes that generate the redjgitanners and parsers in
any of the supported languages. Currently, only ,G3# and Java are available,
but more languages may be supported easily.

Figure II-2 gives a brief illustration of the twoam components of the system, the
scanner generatatEXcellent and the parser generat@arSpring. This block diagram

is just for reference, more details about bothgame presented in the appropriate
chapters later in this part.

Parser Generator Scanner Genearator
Language Tokens
Spacs Speacs
Scanner Farser
Tokens gymax 3‘ MNFA Builder
amnantic wy
Errors Construction”
Parsar Detector
Syntax Treas Syntax Errors % 9
Builder Detactor
OFA Builder
! | “Subset Constrection”
First Sats Extractor DFA Comp or

@ Fairs Redundancy
R Remowved
Cormprassion -
Semantic Ermors Detector Compression
Follow Sets Extractor DFA Minimizer

—— —

Code Genearator

Code Ganerator

= =- =- ==

C+t o= Jawva -+ CH Java
FParser Parsar Farsar Scannear Scanner Scanner

Figure II-2: LEXcellent and ParSpring — The Main Components

The package consists of three main executableslDBethe scanner generator and
the parser generator. The user runs the IDE t¢ ktsrdevelopment, to create and
maintain projects, to edit the specification filasa tailored editor and to utilize the
available helper tools.

When it is time to generate code, the IDE invokes &ppropriate executable to
generate a scanner or a parser, as required hystre If the operations succeed, the
generated code will be released in a code fileerottse a list of errors will be
returned from the code generator to the IDE.

Thus, the process of dealing with the underlyinglecenerators is completely
transparent to the user. However, the user hashbee whether to use our IDE to
invoke the scanner and parser generators, to ustheaniDE (such as the Visual

Studio IDE) or to invoke the generators directlyhaut an IDE. Our IDE, however,

offers a group of functionalities and utilities thraakes it the best choice for dealing
with the scanner and parser generators.

2. The Lexical Analysis Phase

2.1.1 Definition

Lexical analysis is usually the first phase of t@npilation process in which the
lexical analyzer takes a stream of characters awdluges a stream of names,
keywords, and punctuation marks that the parses imsesyntax analysis. In addition,
it may discard whitespace and comments betweetokaesns to simplify the operation
of later phases. It would unduly complicate thespato have to account for possible
whitespace and comments at every possible poiistjstone of the main reasons for
separating lexical analysis from parsing. For exanjp], in lexical analysis the
characters in the assignment statement

position = initial + rate * 60
would be grouped into the following tokens:

1. The identifieposition

2. The assignment symba .
3. The identifieinnitial

4. The plus sigr-.

5. The identifierrate .

6. The multiplication sigrf .
7. The numbe60.

The blanks separating the characters of these sokeuld normally be eliminated
during lexical analysis.

2.1.2 Lexical Tokens

A lexical token is a sequence of characters thateatreated as a unit in the grammar
of the source languad@]. Lexical tokens are usually classified into aténset of
token types. For example, some of the token typestgpical programming language
are listed in the table below.

Some tokens have special meaning in programmingukeges such as IF, VOID and
RETURN. These are called reserwgdrdsand, in most languages, cannot be used as
identifiers. Some of these are illustrated in Ex2abon the next page.

ExTab 2-1: Reserved words and symbols

Type Examples
ID foo n14 last
IF if
COMMA :
NOTEQ I=
LPAREN (
RPAREN)
NUM 73000 515 082
REAL 66.1.5 10. 1e67 5.5e-10

The input file might contain sequences of charactbat are either ignored by the
lexical analyzer or not tackled by the languagergnar. These are calletbntokens
Examples of nontokerere illustrated in ExTab 2-2.

ExTab 2-2: Examples of nontokens

comment [* try again */
preprocessor directive | #include<stdio.h>
preprocessor directive | #define NUMS 5, 6
macro NUMS

blanks, tabs, and newlinejs

In languages weak enough to require a macro prepsoc, the preprocessor operates
on the source character stream, producing anotteacter stream that is then fed to
the lexical analyzer. It is also possible to in&#grmacro processing with lexical
analysis.

Given a program such as

float matchO(char *s) /* find a zero */

{

if (!strncmp(s, "0.0", 3))

return O.;
}
the lexical analyzer will return the stream
FLOAT ID(match0) LPAREN CHAR STAR ID(s) RPAREN
LBRACE IF LPAREN BANG ID(strncmp) LPAREN ID(s)
COMMA STRING(0.0) COMMA NUM(3) RPAREN RPA REN

RETURN REAL(0.0) SEMI RBRACE EOF

where the token-type of each token is reported;esofrthe tokens, such as identifiers
and literals, havesemantic valuesittached to them, giving auxiliary information in
addition to the token-type. For example, the seddedtifier is attached the string
“matchQ”.

There many ways to describe the lexical rules gfregramming language. For
example, we can use English to describe the lexiockéns of a language. A
description of identifiers in C or Java is providadthe following paragrapi]:

An identifier is a sequence of letters and digits; the first character must be a letter. The
underscore (_) counts as a letter. Uppercase and lowercase letters are different. If the
input stream has been parsed into tokens up to a given character, the next token is
taken to include the longest string of characters that could possibly constitute a token.
Blanks, tabs, newlines and comments are ignored except as they serve to separate
tokens. Some whitespace is required to separate otherwise adjacent identifiers,
keywords, and constants.

A more compact, precise, and formal way to speitify lexical tokens of a source
language makes use of the formal language of regxpressions. Not only can
automated checks be performed on this form of &ipaton, but it can be used to
generate efficient lexical analyzers as well.

2.1.3 Regular Expressions

Regular expressions provide a mathematical wayperify patterns. Each pattern
matches a set of strings. So, a regular expresgibatand for a set of strings. Before
providing a definition for regular expressions, define some of the technical terms
that will be used again and again during the dsiomsof lexical analysis and regular
expressions.

The term alphabet or character class denotes amitg fset of symbols. Typical
examples of symbols are letters and characterss@&hf), 1} is the binary alphabet.
ASCII and EBCDIC are two examples of computer altygts.

A string over some alphabet is a finite sequencgyotbols drawn from that alphabet.
In language theory, the terms sentence and wordftee used as synonyms for the
term "string"[2]. The length of a string s, usually written as ifs|the number of
occurrences of symbols in s. For example, banaaastang of length six. The empty
string, denoted by, is a special string of length zero.

The term language denotes any set of strings over some fixed alghableis
definition is very broad. Abstract languages lke the emptyset, or {£}, the set
containing only the empty string, are languageseurkis definition. IfA andB are
two languages over some fixed alphabet, then wiael¢fie concatenation of the two
language®\.B is a language defined by:

A.B ={xy. xO A and y[I B}

LK refers to k concatenations of the langubgef k = 0, thenL° contains only the

empty worde. TheKleene Closuref a languagd. denoted by * is the language
containing all strings that can obtained by formizego or more concatenations of
words fromL, or mathematically:

i=0

A regular expressiomlescribing a given languagieover some alphab& can be any
of the following[1]:

o If aisasymbolirk (ad X), thenais a regular expression witha) = { a }.

* g, wherelL(e) =

{ ¢ } (The empty string)

» If ris a regular expression ovEy then(r) is a regular expression ovEy with

L(()) =L(M).

* If r is a regular expression oVEf thenr* is a regular expression oVEy with

L(r*) =L*(r).

 |If r ands are regular expressions ovEr then their concatenatiom,s or
simplyr s, is a regular expression ovErwith L(r s) =L(r).L(S) .
* If r ands are regular expressions ovEy then their unionr | s is a regular
expression ovex, with L(r | s) =L(r) | J L(s).

A language is regular if and only if it can be gped by a regular expression. Some
regular expressions and descriptions of the largpafey define are listed as

examples in ExTab 2-3:

ExTab 2-3: Example regular expressions

0]1)* 0

b*(abb*)*(ale)
(alb)*aa(al|b)*

Binary numbers that are multiples of two.

Strings ofa's andb's with no consecutive's.
Strings ofa's andb's containing consecutives.

In writing regular expressions, we will sometimesiothe concatenation symbol, and
we will assume that Kleene closure "binds tightéhhian concatenation, and
concatenation binds tighter than alternation; timgsregular expression a b | c means
(a. b) | c, and the regular expression (a | bmeansa|(b. (c)*).

M |N
M.N
MN

-

M*
M?

[a-2zA - Z]

An ordinary character stands for itself.
The empty string. Another way to write it.

Alternation, choosing frorivl or N.
Concatenation, akl followed by anN.
Another way to write concatenation.
Quotation, a string in quotes stands for it
literally.

Repetition (zero or more times).
Optional, zero or one occurrencehdf
Repetition, one or more times.

belf

Character set alternation.

A period stands for any single charadter

| except newline. ExTab 2-
4 Operators
of regular expressions

Next, we present some of the useful abbreviatibas are commonly used to write
regular expressionsalpcd] means & |b | c | d), [b- g] means pcdefg], [b- gM- Qkr]
means hcdefgMNOPQkr], M? meansN! | €), and M* means M - M*). These
extensions are convenient, but none of them extleadlescriptive power of regular
expressions: Any set of strings that can be desdrising these abbreviations could
also be described using the basic set of operaitirthe operators are summarized in
ExTab 2-4 on the previous page.

Using this language, we can specify the lexicaétmkof a programming language as
follows:

ExTab 2-5: More examples on regular expressions

if IF

[a-zA-Z_][a-zA-Z_0-9]* ID

[0-9]+ NUM
([0-9]+"."[0-9]")|([0-9]*"."[0-9]+) REAL

("WTa-z]*"\n")| (" "]"\n" ")+ no token, just white space
. error

The fifth entry of ExTab 2-5 recognizes commentsvbitespace but does not report
back to the parser. Instead, the white space isaied and the lexical analysis
process is resumed. The comments for this lexiealyaer begin with two slashes,
contain only alphabetic characters, and end witbwaline.

Finally, a lexical specification should bmmplete always matching some initial

substring of the input; we can always achieve llyidaving a rule that matches any
single character (and in this case, printsilagal character error message and

continues).

These rules are a bit ambiguous. For examige, can be matched as a single
identifier or as the two tokenis ands8. Moreover, the string can be considered an

identifier or a reserved word. There are two im@otridisambiguation rules to resolve
such ambiguities that are used b¥ Xcellent:

* Longest match: The longest initial substring of the input thancaatch any
regular expression is taken as the next token.

* Rule priority: For a particular longest initial substring, thestfi regular
expression that can match determines its token-fifis means that the order of
writing down the regular-expression rules has sicgmce.

Thus,ifs matches as an identifier by the longest-match, rahelif matches as a
reserved word by rule-priority.

2.1.4 Deterministic Finite Automata
A deterministic finite automaton consists[2}:

1. Afinite set of states, often denoted Qy
2. Afinite set of input symbols, often denoteddy

3. A transition function that takes as arguments tesaad an input symbol and
returns a state. The transition function will conmtydoe denote@d.

4. A start state g one of the states @.

5. A set, of final or accepting states F. The set & smibset ofQ. There can be
zero or more states in F.

Sometimes, it is comfortable to use informal grappresentation of automata, in
which states are represented by circles or nodelsthee transition from a give staje

to stateg; on symbola is represented by a directed edge from state jripde state
(node) q;, labeled witha. The start state is marked by an incoming edge, an
accepting states are marked by an extra inneedmside the node.

ExFig 2-1 is a graph representation of a DFA \#ith {a, b}:

ExFig 2-1: An example DFA

A deterministic finite automaton will often be rafed to by its acronym: DFA. The
most succinct representation of a DFA is a lisbhghe five components above.

The first thing we need to understand about a D&~Aaw the DFA decides whether
or not toaccepta sequence of input symbols. Tlheguageof the DFA is the set of

all strings that the DFA accepts. Suppease; ... & is a sequence of input symbols.
We start out with the DFA in its start statg, We consult the transition functian
sayd(go, a1) = q; to find the state that the DFA enters after preicgsthe first input
symbol a;.We process the next input symbab, by evaluatingd(q;, a); let us
suppose this state ¢gg. We continue in this manner finding statgs o ... g, where
8(g.-1, &) = q;, for each. If g, is @ member of F, then the in@4t & ... a is accepted,
and if not then it isejected The set of all strings that the DFA accepts éslémguage
of that DFA. For example, the DFA in the figure abaccepts the language of all
strings over the alphabea{b} with even number o&’'s and even number dfs.

2.1.5 Nondeterministic Finite Automata

A nondeterministic finite automatofiNFA) has the power to be in several states at
once. This ability is often expressed as an altititjguess"” something about its input.

It guesses which state to go next such that ifetiela sequence of guesses that leads
the string to be accepted by the machine, thenstiisience of guesses is chosen by
the NFA. We introduce the formal notions associatgth nondeterministic finite
automata. The differences between DFAs and NFAswipointed out as we do.

An NFA consists 0f2]:

A finite set of states, often denotéd

A finite set of input symbols, often denotEd

A start state g one of the states @.

F, a subset dD, is the set of final (or accepting) states.

The transition functiord is a function that takes a state @hand an input
symbol inX or the empty worce as arguments and returns a subse@ of
Notice that the only difference between an NFA andFA is in the type of
value that returns: a set of states in the case of an NFAaasidgle state in
the case of a DFA.

akr wbdPRE

Here is an example of an NFA:

a a a a a
\/ ./
= a
ExFig 2-2: An example NFA

In the start state, on input characiethe automaton can move either right or left. If
left is chosen, then strings @6 whose length is a multiple of three will be guted.

If right is chosen, then even-length strings wi# bBccepted. Thus, the language
recognized by this NFA is the set of all strings'sfwhose length is a multiple of two
or three.

On the first transition, the machine in ExFig 2-Bshchoose which way to go. It is
required to accept the string if thereaisy choice of paths that will lead to acceptance.
Thus, it must "guess”, and must always guess dbyrec

Edges labeled witle may be taken without using up an input symbol. igXE3 is
another NFA that accepts the same language:

a a € € a
_/ Y~
a
a
ExFig 2-3: An example NFA with €-transitions

Again, the machine must choose whiclkedge to take. If there is a state with same
edges and some edges labeled by symbols, the neachinchoose to eat an input
symbol (and follow the corresponding symbol-labedeide), or to follow ark-edge
instead.

LEXcellent is the component responsible for generating thiedé analyzer based on

the specifications given in an input file. Sinc&idéal analysis is the only phase in a
compiler that deals with input files, special cateould be given to dealing with
Unicode streams.

The main components ofEXcellent are illustrated here. This is just a general
overview and a thorough description of each phdséh@® generation process is
provided in the appropriate sections of this chapte

User

Speacs
Input Stream N Main Madule
Thompson Construction
MNFA
k
Subset Construction
I DFA
Minimization
Minimized
DF A,
Pairs Compression
C++ Code Genaration G Code Generation Java Code Genaration
C++ it Java
Code . Code i, Code
r
Output Stream

Figure II-3: LEXcellent — The Process

2.3 The Input Stream

The input stream is represented by the classerinputReader

can be summarized in two main functions:

» Read the user options (such as the output langaegke the compression
technique) and pass it to the following phasesawtrol the scanner generation

process.

This class
encapsulates all the fields and methods necessameéding and parsing the input
file. The class was designed principally to deahwinicode files. Its functionalities

» Parse the regular definitions and produce the sparding NFAs. Constructing
an NFA from a regular definition should be a stnifprward task. The NFAs are
then grouped into a single NFA to be passed tméxe stage.

2.3.1 Unicode Problems

One of the main features off Xcellent is its ability to deal with the Unicode character
set, and to generate lexical analyzers capable eaflirdy with Unicode. This
guarantees thatE Xcellent will have a widespread use because most systesmsoar
Unicode-enabled and commercial lexical analyzeregmors generally lack this
feature.

2.3.1.1 What is Unicode?

Unicode[34] is an industry standard designed to allow text symdbols from all of
the writing systems in the world to be consistemépresented and manipulated by
computers. Unicode characters can be encoded asyngf several schemes termed
Unicode Transformation Formats (UTF).

The Unicode Consortium has as its ambitious goal eékientual replacement of
existing character encoding schemes with Unicodenany of the existing schemes
are limited in size and scope, and are incompatiftle multilingual environments. Its
success in unifying character sets has led toidespread and predominant usage in
the internationalization and localization of conmgrugoftware. The standard has been
implemented in many recent technologies, includ€idL, the Java programming
language, and modern operating systems.

2.3.1.2 The Problem

Since we have chosen to use the C++ programmimgiéage in the implementation of
LEXcellent, and to restrict ourselves to the ANSI standamds; have used the
loStream library to implement the input and the output. Thput to LEXcellent is
the text file containing the description of the itat analyzer. The output is the
generated lexical analyzer, along with errors (ify)aand the statistics of the
construction process.

Changing the definition of a certain macro convéresprogram from th&SCII build
mode to theUnicode build mode. This switches the program from usiragrow
characters and their related character processinctibns andostream classes to
using wide characters and their related charactaregsing functions andsStream
classes. Narrow-character programs tend to berfastesmaller. If the user needs are
limited to narrow characters, it would be an ovarhé use a Unicode program. On
the other hand, the user might want to developtaok@rograms for the Arabic
language or the Chinese language, for instance.aStjnicode-enabled lexical
analyzer generator will be great. Consequently, hwitds will be available: aASCII
release and "Enicoderelease.

During the development process, the program waspitedand tested under the
ASCII build. When the application was completewds the time to try the Unicode
build. We thought defining the aforementioned mawerould get things work as

expected. Unicode-encoded test files were preparedall what remained was to
build the application under Unicode. It was truatthhe application compiled

successfully with no problems, but it failed toddhe input files of all test cases. The
failures ranged from detecting invalid sequenceharacters at the beginning of the
file to reading spurious null before or after eatlaracter. When the input included
Arabic letters, nothing related to Arabic was pssszl. We tried the same files with
simple programs developed with C# and faced nolenob

We started to write simple, “Hello World” text fdeunder different Unicode
encodings and use binary editors to view the castehthese files. We found that all
Unicode files always begin with a fixed sequencéyiés that are independent of the
actual text stored in the file. The bytes in thatence differ according to the
encoding under use. We correctly concluded tha wms to help the application
determine the specific encoding under use in tlee But this was not enough to tell
how to solve the problem.

Indeed, this problem exhausted an excessive anoduimie from us. Such a problem
was never expected. See refererjd@%—[48] for more about this problem. We made
a research plan for the whole matter. The plan avganized as a set of questions to
be answered as follows:

- What are the different encodings used to reprddeitode?

- How does|ostream internally work and how does it deal with wide
characters and different file encodings?

- How did other tools deal with Unicode?

The answer to the first question is quite long amdoeyond the scope of this
document. The answer of the second question iddpie of many books merely
dedicated to theostream library. For the third question, we were not siggd with
the number of forums and websites that tackledtdpe. However, we shall briefly
and collectively illustrate the results of the #hrguestions and the solution of the
problem in the following outling35].

+ C++10stream classes use some type of encoder/decoder classamvert
between the internal representation of charactend #heir external
representation. If the characters are externalgp@éed using some encoding
scheme, then an appropriate encoder/decoder aeald be ‘imbued’ with
the stream object.

* The most famous Unicode encodings are UTF-8, UTHBES and UTF-16
LE. UTF-32 BE and LE are not as famous. UTF-8 i8dbit, variable-width
encoding, compatible witiASCII that uses one to four bytes per character.
UTF-16 is a 16-bit, variable-width encoding thaesigrom two to four bytes
per character. UTF-16 is available in two flavotsttle-Indian and Big-
Indian; which differ in the ordering of bytes inokacharacter. UTF-32 is 32-
bit fixed-width encoding that is available eitherlattle-Indian or Big-Indian.
UTF-32 encodings are less commonly used.

 The C++ standard library has not implemented em¢deleoder classes for
Unicode encodings. It defines the template, butsdogt implement it. The
C++ standard library implements something like kkefancoder/decoder class
for dealing with wide characters. All it has to doto convert a two-byte
character into a single byte when writing to a f{ibe the opposite if reading
from a file). If this is not bad enough, how thisngersion is performed is
implementation-dependent.

* The number of characters in the Unicode charaeteg)xceeds 65,536. Thus, a
Unicode character needs more than two bytes foagto Despite this fact, a
wide character variable in Microsoft Visual C++.NRT03™ takes only two
bytes. Thus, some characters took more than twesbyt memory. This
means that in-memory characters have variablehlsngt

* We were able to find implementations of the enc#moder classes for
UTF-8 and UTF-16 LE. When it was the time to rdtrg testing process, we
found that it is the responsibility of the developedetermine which encoding
scheme is used in the text file, and ‘imbue’ therapriate encode/decoder
object to deal with before opening the file. Thisans that the file must be
opened twice, once to determine its encoding anthanto read it.

* Microsoft Visual C++.NET 2003™ implementationiofStream library is not
that good. It works very well withostream classes based on narrow
characters, but it fails miserably to operate wiide characters and different
‘imbued’ encoder/decoder objects. The most predantifailure occurs when
trying to reposition the read pointer (seek) altftouhe address sought is
given as an absolute address rather than a relatige The latter feature is
crucial for any lexical analyzer to be able to dedh arbitrary lookaheads.

The last observation was extremely painful to us;esit meant that we had to either
stop trying to support the Unicode character setodiind an alternative method to
process the input. In addition, any alternativehodtfor processing the input should
comply with the standards; otherwise our top gedli¢h is platform independence)
is to be sacrificed.

At last, we decided to make our own input claskaswrapped the C file I/O routines
included in the C++ standard library. The inputsskes we have developed support
UTF-8, UTF-16 BE and UTF-16 LE. The application when tested under the
Unicode build over Unicode test files and it opedasmoothly and without problems.
We implemented a successful sample applicationdéals with the Arabic language.
You can view it on the companion CD.

The input file format ofCEXcellent is very similar to that offEX. This is because
LEX is widely used and its input format explained iany compiler books. Thus,
anyone familiar withCEX should be able to user xcellent with little trouble.

The LEXcellent input file consists of five sections, a line begimg with %%separates
each two:

Top File Definition

%%

Class Definition — User Code

%%

Rules

%%

Eviandead Definitinne (1Y _ llecar Codoe

Figure II-4: LEXcellent — The Format of the Input File

The specializations of these sections differ depgndn the programming language
used for code generation. For example, EBxtended Definitions (1¥ection specifies
user code to be copied into the generated fileghdf lexical analyzer is to be
generated in C++, this section will be copied ahitop of the C++ source code file
(.cpp file). If the lexical analyzer is to be gesied in C#, this section will be copied
onto the C# source code file (.cs file) just aftex lexical analyzer class definition but
inside the same namespace.

Each section is detailed below.

2.4.1 Top File Definition

This section can be used for the following purposes

* Specifying options related to code generation.
» Declaring macros for latter use in the specifiqatio
* Writing some code that is placed, as-is, at theofdhe generated file.

These can be specified in any order, and can bedibgether in the specification. In
addition, comments can be freely added anywherthis section and are copied
without changes to the generated code. There ar¢yjpves of comments:

i) Single-line comments. The line should begin with

i) Comments delimited by* */ . The delimiters should be placed at the
beginning of the line without any indentation. Qthise, their effect is
ignored.

The format of each of the above purposes is detaidow:

Options

Options related to code generation can be spedciiet configured in th@op File
Definition section using the following format:

%option OptionName = OptionValue

For example, the following statement tells the cagbmerator to use the C++
programming language for code generation:

%option Language = C++

The following statement tells the code generatat the permitted range of Unicode
characters is from 0x0000 to 0x007F:

%option CharacterSet = [\d0-\d127]

Lines describing options should be unindented. tise, it will be considered user-
defined code that should be copied as-is into theegated code. This anomaly is
found in the£LEX input file format, too. That's why we preferred teomodify it.

OptionName andOptionValue are case insensitive. In addition, each option has
a pre-specified default value. If an option is apécified in the specification file, its
default value is assumed. Thus, it is possible titewa specification file without
explicitly specifying any option.

Table II-1 lists the different configurable optioinsthis section:

Table II-1: Configurable Options in Top File Definition Section

Option Name Option Values Default Description
Value
Language C++ C++ The programming language of the
C# generated lexical analyzer.
Java
CharacterSet Character class [d0-d127] The subset of Unicode character
(described below) range to use for the input of the
lexical analyzer.
Namespace Identifier Compiler The namespace of the generated
lexical analyzer class.
ClassName Identifier LexicalAnalyzer The lexical analyzer class name.
FunctionName Identifier The pattern matching function
GetNextToken
name.
ReturnType Identifier int The Return type of the pattern
matching function.
FileName Name and path of the file Lex The path and name of the
generated lexical analyzer file(s) —
Appropriate file extensions are
appended automatically.
CompressionTechnique | None Redundancy The compression technique to use
Redundancy for compressing the lexical
Pairs analyzer transition table.
Best
PairsThreshold A nonnegative integer 8 If pairs compression is used, this
specifies the number of items
above which, the state is

considered dense and is
represented by an array rather

than a linked list.

InvalidTokenAction Value to be returned by | -2 If the lexical analyzer faced an

the function. invalid token, then the pattern
matching function returns by
executing:

return InvalidTokenAction;

EOFAction Value to be returned by | -1 If the lexical analyzer reaches the

the function. end of file, then the pattern
matching function returns by
executing:

return EOFAction;

Macros

Macros provide a way to give frequently used regalgressions more user-friendly
names for later use. They help improve readabalgywell as maintainability of the

specification. Indeed, macros provide a way fortt@izing the changes; i.e. if we

have a macro used in more than one regular expreasd it is required to change the
value of this macro, then the change is made antgeamacro definition statement.
This section contains declarations of simple malainitions to simplify the scanner

specification. Macro definitions have the form:

MacroName Definition

The MacroName is a word beginning with a letter or an undersdbrg followed by
zero or more letters, digits, or '_'. TBefinition is to begin at the first non-
white-space character following the name and camtgto the end of the line. For
example,

DIGIT [0-9]

The definition can subsequently be referred to gigMacroName} , which will
expand taDefinition) . It is possible to invoke previously defined macho the
definition of the current macro. For example,

DIGIT [0-9]
LETTER [a-zA-Z]
ID {LETTER}{LETTER}|{DIGIT})*

definesDIGIT to be a regular expression which matches a siigie LETTER to
be a regular expression which matches an Englighr I¢either in upper-case or
lower-case), andD to be a regular expression which matches a l&teawed by
zero-or-more letters or digits. A subsequent ezfee to

{DIGIT}+"."{DIGIT}*

is identical to

([0-9])+"."([0-9])*
and matches one-or-more digits followed by allofeed by zero-or-more digits.
Lines describing macros should be unindented. Qtisey, it will be considered user-

defined code that should be copied as-is into theegated code. This anomaly is
found in the£LEX input file format, too. That's why we preferred tomodify it.

User-Defined Code

This is the code to be copied as-is into the geedréle. Indented lines represent

user-defined code, which is copied in order int® generated code. An alternative is
to delimit a section of code B{ %} (copied as-is into the generated code after
removing the delimiters). For example,

#include <iostream>
%

#include <cmath>
using namespace std;
%}

These will be copied to the top of the generatextibefile as follows:

#include <iostream>
#include <cmath>
using namespace std;

The delimiters are to be placed at the beginninthefline. Otherwise, they will be

ignored. The exact location in the generated coder&v user-defined code is pasted
differs depending on which programming languagectiee uses. The following table

illustrates the location in the generated code wheser-defined code is pasted with
respect to the used programming language.

Table lI-2: Top of Definition — User Defined Code Placement

Programming Language Location
C++ At the top of the header file (.h).
Java At the top of the source file (.java).
C# At the top of the source file (.cs).

2.4.2 Class Definition

In this section, the user writes code to be plaosite the lexical analyzer class
definition. For a C++ developer, this allows deiclgrmember variables, member
functions, static variables and/or static functioRer a C# /Java developer, this

allows declaring member/static variables and defjnmember/static functions. The
code is copied as-is into the generated code.

The exact location in the generated code where-defered code is pasted differs
depending on which programming language the codss.u$he following table
illustrates the location in the generated code wheser-defined code is pasted with
respect to the used programming language.

Table II-3: Class Definition — User Defined Code Placement

Programming Language Location

C++

Inside the lexical analyzer class definition, inefh
header file (.h).

Java Inside the lexical analyzer class definition, inefh
source file (.java).

C# Inside the lexical analyzer class definition, inefh
source file (.cs).

2.4.3 Rules

The rules section contains a series of rules ofdirma:

pattern action

wherepattern must be unindented and the action must begin osdhe line. A
detailed discussion of patterns and actions isigeavbelow.

Patterns

The patterns in the input are written using an redéel set of regular expressions.

These are:
Table lI-4: Regular Expression Patterns

Regular Expression Description

X match the character x
any character except newline (Note that any charfct
means any character from the defined charactemsite
options)

[xyz] a "character class"; in this case, the pattern mesteithe
anx,ay,oraz

[abj -o0Z] a "character class" with a range in it; matchea,amb, any
letter from j through o, ora Z

[ab[-] a "character class"; in this case, the pattern mesteithe
a, b, [or-.

A - Z] a "negated character class", i.e., any charactethiose inj

the class. In this case, any character EXCEPT| an
uppercase letter.

["] match ~

["A -2\ n] any character EXCEPT an uppercase letter or a newli

[l an empty word; a[lb matches ab

r* zero or more r's, where r is any regular expression

r+ one or more r's

r? zero or one r's (that is, "an optional r")

{Macro} the expansion of theVfacro " definition

\ X if xisan a, b, f, n, r, t, or v, then the ANSIk@erpretation
of L'\X'. Otherwise, a literal x (used to escapeerators
such as *)

"[xyz] \ "foo" the literal string: [xyz]"foo

\ 012 the Unicode character with octal value 12

\ 012 the Unicode character with octal value 12

\ x43F the Unicode character with hexadecimal value 0x043F

\ X1212FF the Unicode character with hexadecimal value 0x1212
followed by two capital F's.

\ D48 the Unicode character with decimal value 48

\ d434344 the Unicode character with decimal value 43434ofedd
by the Unicode character L'4'

(r) match an r; parentheses are used to override peced

rs the regular expression r followed by the regulgsregsion
s; called "concatenation”

R| s either regular expression r or regular expression s

Note that inside a character class, all regularesgion operators lose their special
meaning except escapeand the character class operatetd,, and, at the beginning
of the class}.

The regular expressions listed above are groupedr@diag to precedence, higher
precedence first. Those grouped together havd pge@edence. For example,

foo | bar*

is the same as

(foo) | (ba(r*))

since the* operator has higher precedence than concatenatimhconcatenation is
higher than alternation. This pattern therefore matches either the stifiog' or the
string "ba" followed by zero-or-more r's. To matébo" or zero-or-more "bar"s, use:
foo | (bar)*

and to match zero-or-more "foo"'s-or-"bar"s:

(foo | bar)*

Actions

Each pattern in a rule has a corresponding actidmch can be any arbitrary
C++/C#/Java statement. The pattern ends at tls¢ fion-escaped whitespace
character; the remainder of the line is its actidfrthe action is empty, then when the
pattern is matched the input token is simply didedr For example, here is the
specification for a regular expression, which dedatll occurrences of the single-line
C++ comment from the input:

" *

If the action contains f, then the action spans until the balanging found, and the
action may cross multiple line€EXcellent knows about strings and comments and
will not be fooled by braces found within them. icets are allowed to begin with{
and will consider the action to be all the texttapghe nex®so} (regardless of ordinary
braces, comments, and strings inside the action).

2.4.4 Extended Definitions (1)

This section and the next are optional and thetififpimay be terminated without
specifying them. This section is used to write cddat is placed as-is into the
generated files. Thus, no syntactic checks areopedd on the contents of this
section.

For a C++ developer, the code in this section &edl at the top of the generated
source (.cpp) file. This can be used to includedkediles, declare/define external

and/or static variables and define macros. For dadaC# developers, the code in this
section is placed right after the end of the daéniof the lexical analyzer class, but
inside the same namespace. This can be used teed#her classes, structures, and
enumerations under the same namespace. The fofowéhle summarizes the

placement of the code in the generated files acogrib the programming language

under use.

Table lI-5: Extended Definitions (1) — User Defined Code Placement

Programming Location
Language
C++ At the top of the generated source file (.cpp).
Java Right after the end of the lexical analyzer cldmg,inside theg
same namespace in the generated source file (.java)
C# Right after the end of the lexical analyzer cldmg,inside theg
same namespace in the generated source file (.cs).

2.4.5 Extended Definitions (2)

This section is also used to write code that i€gdawithout modifications into the
generated files. Hence, the tool does not perfomtastic checks on the contents of
this section.

For a C++ developer, the code in this section &¢dl at the end of the generated
source (.cpp) file. Thus, it can be used to impleinay member functions declared
in the'Class Definition'section or add any required code. For C# and davelopers,
the code is placed at the bottom of the generabedcs file, after the end of the
namespace. This can be used to define other naoesspkong with their classes. The
following table summarizes the placement of theeciodthe generated files according
to the programming language used.

Table II-6: Extended Definitions (2) — User Defined Code Placement

Programming Location
Language
C++ At the bottom of the generated source file (.cpp).
Java At the bottom of the generated source file, rigfterathe
namespace of the lexical analyzer class (.java).
C# At the bottom of the generated source file, rigfterathe
namespace of the lexical analyzer class (.cs).

In this section, we describe the error messagdsBacellent provides for various
types of errors encountered in input files, andcai® some of the situations that
cause such errors.

Unexpected End of File.

Causes

The input file terminates before defining the Rules section.

Example
The following sample generates the specified error.

%option CharacterSet = [\x00-\x7F]
%option Language = C++

sin (S[s)(Ili)(N[n)

%%

Bad Directive.

Causes

The Top File Definition section contains an invalid directive. The three valid
directives are

o %option name = value.

This line specifies modifying the value of an option such as the language to be
used for code generation. Although the option name is not case-sensitive, the
keyword option is case-sensitive.

o %<

This begins a block of code that will be placed as-is in the generated file. This
block is terminated by %?Y. For further information, see “LEXcellent Input File

Format”.
o %%

This terminates the Top File Definition section.

Example
The following sample includes two lines that generate the specified error.

%option CharacterSet = [\x00-\x7F]

/* The following line is valid. */
%option LanGuage = C++

[* The following line is invalid. */
%OPTION ClassName = Lexer

/* The following line is invalid. */
%unknown_directive

Invalid Option Specification.

Proper option format:
%option some_thing = some_value.
Causes

The option format is invalid.

Example
The following sample includes three lines that generate the specified error.

%option CharacterSet = [\x00-\x7F]

[* The following line is invalid. */
%option

/* The following line is invalid. */
%optionLanguage = C++

/* The following line is invalid. Missing = */
%option ClassName Lexer

The Specified Option is not Supported.

Causes

Although the format of the option is valid, it specifies an unsupported option.

Example
The following sample includes three lines that generate the specified error.

%option CharacterSet = [\x00-\x7F]

[* The following line is invalid. */
%option Lang = C++

[* The following line is invalid. */
%OPTION aBrandNewOption = Lexer

/* The following line is invalid. */
%option Class Name = Lexer

Invalid Macro Definition. Eliminate the Trailing Characters.

Causes

The macro definition is followed by spurious characters.

Example

The following sample generates the specified error.
%option CharacterSet = [\x00-\x7F]

%option Language = C++

Macrol [a-z]+ /* Avalid line. */

[* The following line is invalid. */
InvMacro [0-9]+ spurious characters are the cause o f the error

The Specified Macro Name is Already Defined.

Causes

The user is trying to redefine a macro.

Example

The following sample generates the specified error.
%option CharacterSet = [\x00-\x7F]

%option Language = C++

/* The following line is valid. */

Macrol [a-z]+

[* The following line is invalid. */
Macrol [0-9]+

The Invoked Macro is Undefined.

Causes

The user invokes a macro within a regular expression that has not been defined.

Example

The following sample includes three lines that generate the specified error.
%option CharacterSet = [\x00-\x7F]

%option Language = C++

/* The following two lines are valid. */
Macrol [a-Z]
Macro2 {Macrol}+

[*The following line is invalid*/
Macro3 {Macro4}+
Macro4 (a|b)*

[*The following line is invalid due to self-referen ce*/
Macro5 a[{Macro5}

%%
[*Top class definition*/
%%
/* The following definition is invalid */
[0-9{UndefinedMacro} { cout<<”l am invoking an
undefined macro.”<<endl; }

%%

Invalid Macro Invocation within the Regular Expression. The Macro
Name Contains Invalid Characters.

Causes

The name of the macro invoked by the user is not a valid identifier. The valid
format for a macro name is:

[a-zA-Z_][a-zA-Z_0-9]*

Example

The following sample includes two lines that generate the specified error.

%option CharacterSet = [\x00-\x7F]
%option Language = C++

/* The following two lines are valid. */
GoodMacro [a-Z]
BadOrGoodMacro {Macrol}+

[*The following two lines are invalid*/
Macro3 {Good Macro}+
Macro4 {Bad|GoodMacro}+

Bad Character Set Definition. Check the Supplied %option
Character Set.

Causes

The user specifies an invalid character set. If the user does not specify a
character set to use in the input file, then the default character set (ASCII [\x00-
\x7F]) is assumed. Otherwise, the valid format for character sets is the same as
that for a valid character class.

Example

The following samples generate the specified error.

[* The following line is invalid */
%option CharacterSet =][

[* The following line is invalid. Unexpected end of character
class*/
%option CharacterSet = [\x00-\x7F

Invalid Use of Parentheses within the Regular Expression. Check
Balancing.

Causes

The user has put a spurious closing parenthesis ")" inside the regular expression.

Example
The following sample generates the specified error.

%option CharacterSet = [\x00-\x7F]
%option Language = C++
%%
%%
/* The following regular definition is invalid. */
(alb)*)abcd { cout<<”l am closing something that I did not
open.’<<endl; }

Unexpected End of the Regular Expression. Check Balance of
Parentheses.

Causes

The user has opened one or more parentheses and the regular expression has
terminated before balancing them.

Example
The following sample includes two lines that generate the specified error.

%option CharacterSet = [\x00-\x7F]
%option Language = C++

%%
%%
/* The following regular definition is invalid. */
((a]b)* { cout<<"The regex should have terminated with
)’<<endl; }

/* The following regular definition is valid. */
\((alb)* { cout<<"The first (is escaped is by the
backslash.”"<<endl; }

Unexpected End of Regular Expression.

Causes

The user has opened double quotes " but has forgotten to close them. It may be
the case also that the user has opened a character class [but has forgotten to
close it. Finally, the user might have tried to invoke a macro but have forgot the
closing brace }.

Example
The following sample includes three lines that generate the specified error.

%option CharacterSet = [\x00-\x7F]
%option Language = C++
%%
%%
/* The following regular definition is invalid. */
“bad { cout<<"bad 1'<<endl; }

/* The following regular definition is invalid. */
{bad2 { cout<<’bad 2"<<endI;}

/* The following regular definition is invalid. */
[a-z { cout<<"bad 3"<<endl; }

lllegal Spaces within Regular Expression.

Causes

The regular expression contains white spaces. White spaces are not allowed
inside a regular expression except after backslashes, inside double quotes, or
inside character classes.

Example
The following sample generates the specified error.

%option CharacterSet = [\x00-\x7F]
%option Language = C++

%%
%%
/* The following regular definition is invalid. */
((a] b)* { cout<<"The fifth character is invalid.”<<endl;
}

/* The following regular definition is valid. */
((@)\Nb)* “[1] { cout<<"All spaces here are
legal.”<<endl; }

Negative Ranges within a Character Class are not Allowed.

Causes

A character class contains one or more range from a later character to an earlier
one.

Example
The following sample generates the specified error.

%option CharacterSet = [\x00-\x7F]
%option Language = C++
%%
%%
/* The following regular definition is invalid. */
[z-a] {cout<<"It should have been a-z."<<endl;}

One or More Characters within the Regular Expression are
Outside the Range of the Defined Character Set.

Causes

Some characters in a regular expression are not covered by the character set
defined by the user or by the default character set if the user has not specified a
one.

Example

The following sample generates the specified error.

%option CharacterSet = [a-Z]
%option Language = C++
%%
%%
/* The following regular definition is invalid. */
Alb { cout<<"A is outside [a-z]."<<endI; }

Unknown Error.

Causes

An error has occurred that is not classified under any of the previous classes of
errors.

Example
The following sample generates the specified error.

%option CharacterSet = [\x00-\x7F]
%option Language = C++

/* The following line is invalid. */
/

[* The following line is invalid. */
143

This phase in the lexical analyzer constructioncess is that responsible for
converting the set of regular expressions speciiredhe input file into a set of

equivalent Nondeterministic Finite Automata (NFA3hompson’s Construction is

the algorithm we apply to transform a given regeatgpression into the corresponding
NFA. The resulting NFA has a special structure thatexploit so that the remaining
phases are performed more efficiently.

Regular Expression Context-Free Grammar

The language of all regular expressions is not leggu.e., there is no regular
expression characterizing the general pattern gfragular expression. This fact is
easy to prove by observing that the language

{("a)":n 20}

which was proved to be irregular by the pumpingr®anfor regular languages, is a
mere subset of the language of all legal regulpressions. However, the language of
all regular expressions can be expressed by mdam€BG. The production rules of

the CFG employed in our application is listed beloiEBNF:

Regex — Regex or ConcateRegex | ConcateRegex

ConcateRegex — ConcateRegex Term | Term

Term — Term plus | Term star |
Term question_mark | Atom
Atom — LB Regex RB| quoted_text | symbol |
any | epsilon | ccl | macro

The following are the lexical definitions (the régudefinitions of terminals, using
regular expressions):

Or 3 1

plus -+

star -

guestion_mark -7

LB (¢

RB —-')’

quoted_text Al A W | A W) S
symbol -

any -7

epsilon —“1 "

ccl i S (KN | S S
identifier —[a-zA-Z_][a-zZA-Z 0-9 *
macro —“ {*identifier "

The start symbol of this CFG RBegex. All nouns beginning with a capital letter are
non-terminals. All nouns beginning with small let@re terminals. Since we need to
find an NFA that accepts the same language asatseg regular expression, we add
to all non-terminals the attributda that provides the NFA equivalent to the regular
expression expressed by that nonterminal. The ctatipn of that attribute follows a
recursive manner such that thia of a given nonterminal is constructed recursively
from thenfa 's of its constituents. The production rules for rdin-terminals are
written again after augmentation with attribute &ipns:

Table II-7: Regular Expression Context-Free Grammar

Production Semantic Rules
Regex; — Regex , or Regex;.nfa = Or(Regex 2.Nfa,
ConcateRegex ConcateRegex.nfa)

Regex - ConcateRegex Regex.nfa = ConcateRegex.nfa

ConcateRegex ;.nfa =

ConcateRegex ; - Concat(ConcateRegex ».nfa,

ConcateRegex , Term

Term.nfa)

ConcateRegex - Term ConcateRegex.nfa = Term.nfa

Term; - Term , plus Termj.nfa = Closure_plus(
Term,.nfa)

Term; — Term , star Term;.nfa = Closure_star(
Term,.nfa)

Term, — Term Termj.nfa = Closure_quest(

question_mark Term,.nfa)

Term - Atom Term.nfa = Atom.nfa

Atom - LB Regex RB Atom.nfa = Regex.nfa

Atom.nfa = NfaFromSymbol(

Atom - symbol symbol.value)

Atom - epsilon Atom.nfa = NfaFromEpsilon()

Atom.nfa = NfaFromQuotedText(
guoted_text.value)

Atom - quoted_text

Atom.nfa = NfaFromCCL(

Atom - ccl
ccl.value)

Atom - any Atom.nfa = NfaFromCCL(
all_symbols)

Atom.nfa = ParseRegex(

Atom - macro
macro.regex)

The Thompson’s Construction algorithm provides & wa construct the NFA of
some part from its subparts, such that the reguNiRA accepts the desired language.
However, the regular expression grammar we havdaogeegh has other features and
operations that are not explicitly described in déitgorithm. Although these features
can be defined in terms of the basic features @edations covered in the algorithm,
the definition will be inefficient, as will be sedatter as we describe the algorithm.

We begin by describing the basic features and tipasacovered in the algorithm. In
the following illustrations, the states drawn odésiboxes are those that have been
newly added.

If we have a regular expression consisting of ang symbol, then an NFA that
accepts the same language is given by:

M
Figure II-5: NFA for a One-Symbol RegEx

This shows how the functigdfaFromSymbol is implemented.

Now, suppose that we have the regular expressja) wherer ands represent any
two regular expressions. Suppose that we have ssiotly constructed the NFA of
the regular expression and that of the regular expressienWe can construct an
NFA that accepts the same language of the regufaessiorr | s as follows:

P ORION
~NO s OFF

Figure 1I-6: NFA for Two ORed RegEx's

This shows how thér function used in the first semantic rule is impésted.
Assume that we are to construct the NFA equivaletie regular expressiars, and
inductively assume that we have available the NFA and the NFA ok. Then, we
can construct the NFA of their concatenation bynglating the start state sfafter
duplicating all its transitions into the final stadfr, and setting as the final state of
the new NFA the final state ef The configuration is shown below:

Q r Q s @

Figure 1I-7A: NFA for Two Concatenated RegEx's

It could have been alternatively made as follows:

QQSG@

Figure 1I-7B: NFA for Two Concatenated RegEx's

However, the former configuration takes less sterdige to the elimination of one of
the states. We have implemented @wncat used in the third semantic rule so that
it achieves the former configuration.

Assuming that we have the regular expressiforand that the NFA of the regular
expressiorr is available. Then the final operation describedhm method, which is
theKleene Closure (*)is implemented as follows:

Figure II-8: NFA for a RegEx Closure

The above NFA indeed accepts zero or more occueseafr. This shows how the
Closure_star is implemented. Next, we describe how the othetufes and
operations are implemented. We begin by constrgdtie NFA of the empty word
(epsilon or[] in our grammar):

@

Figure 11-9: NFA for the Empty Word (E)

This is how the functionNfaFromEpsilon is implemented. The regular
expressior+ means one or more occurrences.oAlthough this could have been
implemented as r* ; we have used another method to implement it tddegs much
less space than the former technique. The contigaras shown below:

~O0) = OO

Figure II-10: NFA for a RegEx Positive Closure

If the number of states in the NFA ofis M, the number of states in the resulting
NFA would be M+2. However, the former techniqueultssin an NFA that has 2M+1
states. This shows how the functi@iosure_plus is implemented. By the
regular expressiorf?, we mean at most one occurrence .dimplementing this as|

[] will result in an NFA that has M+3 states. Howewee implemented it so that it
takes only M+1 states. The configuration is showfigure 11-11.:

0 -0

13
Figure II-11: NFA for an Optional RegEx

This shows how the functiolosure_quest is implemented. The regular
expressiora b cshould be interpreted asfollowed byb followed byc. Hence, it is
implemented aa b ¢ The NFA ofa b cis shown in ExFig 2-4:

ExFig 2-4: NFA of the regex (a b ¢)

This shows how the functioNfaFromQuotedText is implemented. The reason
behind enclosing a string by double quotes ratien writing it directly is that many
of the special symbols, having special meaning hae tanguage of all regular
expressions, lose that special meaning inside tubld quotes. For example/’
means exactly one occurrence of the synjb®he regular expressiqabA-Zde] is
equivalent to the regular expressianf b | A| B | ... | Y| Z | d | eHowever,
constructing the NFA of the regular expression gdime latter mechanism wastes
much space since each “Or” adds new states. Werhade an informal technique to
implement this as seen in ExFig 2-5:

@ {ta, b, A, B, .., Y, z, 4, e} @

ExFig 2-5: Example

That is, we represent this transition by an eddeléd with a set of symbols. We
move from the start to the final state if we reag af the characters included in that
set. We associate with each edge a pointer thanitiglly set to null . If the
transition of the edge is based on a charactes,ctaen we allocate a portion in the
memory to store a representation of that set, toreé #s address in that pointer. This
shows how the functioNfaFromCCL is implemented. If the regular expression is a
mere invocation of a previously defined macro, thenparse the regular expression
of that macro. The resulting NFA is the NFA of tmacro. Thus, any valid regular
expression can be converted into an equivalent NiSA&g the aforementioned
guidelines.

As we previously stated, the NFA resulting from #imve procedures has a special
structure that allows efficient implementation bétnext phase which is the subset
construction. The properties of the obtained NF& ar

* The NFA has a unique, non-enterable start state.

» The NFA has a unique, non-exitable final state.

* A given state has exactly one outgoing edge labble@ symbol, a set of
symbols (in case a character class), or at mosetges labeled.

Now we need to convert the NFA obtained from th@mbkon Construction phase,
into a DFA to be used in the next phases. The bdsi here is that sets of states in
the NFA will correspond to just one state in theADF

* From the point of view of the input, any two stathat are connected by an
transition may as well be the same, since we cawenfiom one to the other
without consuming any input characters. Thus statéish are connected bysa
transition will be represented using the same statéhe DFA.

» Ifitis possible to have multiple transitions basa the same symbol, then we can
regard a transition on a symbol as moving fromagesto a set of states (i.e. the
union of all those states reachable by a transitiorthe current symbol). Thus
these states will be combined into a single DFAesta

2.7.1 The Basic Idea

To perform this operation, let us define two fuons:

0 The e-closure function takes a state and returns the set oéstetachable
from it based on (one or more}ransitions. Note that this will always include
the state itself. We should be able to get frontadéesto any state in its
closure without consuming any input.

o The functionmove takes a state and a character, and returns thef s&dtes
reachable by one transition on this character.

We can generalize both these functions to appégets of states by taking the union of
the application to individual states. For exampglé, B and C are states;

move({A,B,C},'a’) = move(A, ‘a’) U move(B, ‘@) U m ove(C,
‘a’).

1) Create the start state of the DFA by taking ¢hetosure of the start state of the
NFA.

2) Perform the following for the new DFA state: Foclegossible input symbol:
a. Apply move to the newly-created state and the ingumbol; this will
return a set of states.
b. Apply the e-closure to this set of states, possibly resulimg new set.
This set of NFA states will be a single state & BFA.

3) Each time we generate a new DFA state, we musy &g 2 to it. The process is
complete when applying step 2 does not yield any states.

4) The finish states of the DFA are those which congany of the finish states of the
NFA.

2.7.2 The Implementation

BuildDFA(list_of_states, list_of_actions)

o list_of states: A vector of the states in the NFA to be converitgd a
corresponding DFA.
o list_of_actions: A vector of the actions to be performed if theunptring

terminates while the machine is at the correspanditate. The non-accepting
states have a corresponding action\dfL L

This procedure takes an NFA as a parameter inaitme 6f two parallel vectors: The
vector of states and the vector of corresponditigrs

The procedure is a member function in the DFA ¢laggen the procedure is invoked,
the host DFA will be set in such a way that it bees equivalent to the input NFA.

The procedure makes use of the following classes:

o IntermediateState: This class holds a subset of the states in that inp
NFA corresponding to one state in the output DFA.

0 IntermediateStateList: A linked list of intermediate states.

Besides using the following helper functions:

o eClosure(): This function takes an NFA state as a parametereturns
thee-closure of that state.

For example: Given the following NFA which is obugly equivalent to the regular
expressiond* | b):

ExFig 2-6: NFA for (a* | b)

The procedure starts by constructing a single $utmsgaining the start states of the
input NFA, which, in our case, is {1}. It runs tle€losure() procedure to obtain
the e-Closure of the subset. This will give {1, 2, 3,6,7} in our case. Such subset
becomes an intermediate state and it should bedamdéhe intermediate states list
(the DFA). This will give the following initial vale to the DFA State Table:

ExTab 2-6A: DFA state table

DFA State NFA Subset Next State (a) Next State (b)

A {1,2,3,5,6, 7}

The next step is to determine the next state oDiR& if the current state i& and the
input character ia orb.

Given the current state A& and input character & then the next state can be defined
as 'the set of all NFA states that can be reached famy of the NFA states in A by
following an edge labeled in the original NFA"

Thus, for each NFA state, wherex € A, run the NFA againstX, a). Then take the
closure of the result. That is;Closure (nxtStat (NFA, x, 'a’)), for each x€ A. This
will give the followingNext Statelable:

ExTab 2-7A: DFA next-state table

State Next State (a) Closure (Next State(a))

{4} {_3, 4,5, 6}

~NOoO O1TWwWN -
1

Since the subset {3, 4, 5, 6} is not already inititermediate states list (that is, to the
constructed DFA), then we have to add it. And wallshive it a name, sa. Thus,
nxtStat(DFA, A, 'a’) = B.

Repeating the same steps for nxtStat(DFA, A, 'l@)get the followingNext State
Table:

ExTab 2-7B: DFA next-state table

State Next State (b) Closure (Next State(b))

~NOoO O1TWwWwN -
1

{8} {6.8}

Similarly the resulting subset {6, 8} doesn't bejao the DFA, then we have to add a
new state, let it b€, to the DFA, such thatxtStat(DFA, A, 'b") = C. This will give
the following DFA Table:

ExTab 2-6B: DFA state table

DFA State

NFA Subset

Next State (a)

Next State (b)

A
B
C

{1,2,3,5,6, 7}
{3,4,5, 6}
{6, 8}

B

C

Now we repeat all the above mentioned steps omeékeincomplete row in the DFA
State Table. The operations continue until all theermediate states are fully

determined.

The final table configuration will be like ExTab6Z::

ExTab 2-6C: DFA state table

DFA State NFA Subset Next State (a) Next State (b)
A {1,2,3,5,6, 7} B C
B {3, 4,5, 6} B -
C {6, 8} - -

A state (whether deterministic or not) is said ®amaccepting statef there is an
action associated with it. That is, th® state in thelist_of states is an
accepting state if th&action in thelist_of actions IS NotNULL

A DFA state is said to be atcepting statéf at least one of the NFA states that it
contains is an accepting state. In our case, alDiRA states contain NFA accepting
states, since the only NFA accepting state ava]atbhich is state 6, belongs to all the
states in the new DFA. We can say that all the BiadesA, B andC are accepting.

The resulting DFA is shown in the next figure. Glugly it corresponds to the regular
language d* | b), which is that same as that of the NFA.

ExFig 2-7: The final DFA

2.7.3 Contribution

It has been noticed that the traditional subsetsitoation algorithm produces so
much intermediate states than needed. We have iesbdifich algorithm to get rid of
redundant states.

For example, given the following NFA:

ExFig 2-8: Identifier NFA

The traditional subset construction should giveftiewing DFA:

lettel [—\
64, 5,6,7,09, 1(D

lettel
lette <{2 3457 1D digit lettel
digit /

digit
ExFig 2-9: Identifier DFA — The traditional algorithm

We noticed that some of the states in the orighté have no outgoing transitions
but thee-transitions. We have called such statespty statesother states that have
character-labeled-edges are calbetive states\WWhen comparing intermediate states,
two intermediate states are said to be the satheré active states are the same, that
is, we don’t take empty states in considerationis Tdontributes to a considerable
reduction in the number of resulting intermedidttes.

Our algorithm should give the following DFA, asusktrated in ExFig 2-10:

lettel
G lettel .

digit

ExFig 2-10: Identifier DFA — The enhanced algorithm

It's noteworthy that this idea was mentioned by Ahohis classical book about
compilers[2]. Thus it's indeed a previously realized optim@atibut we reached it
alone before reading it in his book. That's why Vaed it under the title
"Contribution".

After the regular expression passed Thomson Carigiruand Subset Construction
phases; a DFA resulted. But it's not the optimak.oiffhe role of the DFA
minimization algorithm is to produce a new DFA wilie minimum number of states.

The algorithm can be illustrated by the followingepdo-logic mentioned below.

INITIALLY

Partition the original states into a series of grou ps. Non-accepting
states comprise a group, and accepting states havin g the same
accepting string are grouped together. A one-elemen t-group containing

a single accepting state is permissible. Groups are stored in a

Variable called Groups.

REPEAT UNTIL NO NEW GROUPS ADDED

BEGIN
FOREACH (GROUP Gin Groups)
BEGIN
GROUP new = Empty.
STATE first = First state in group G
STATE next = Next state in Group G or NULL if none.
WHILE(next != NULL
BEGIN
FOREACHCHARACTER C)
BEGIN
STATE goto_first = State reached by making a transition
on C outof first
STATE goto_next = State reached by making a transition
on Cout of next.
IF (goto_first is not in the same group as goto_next)
THEN
Move next from the G into new.
ENDIF
END_FOREACH
next = The next state in group Gor NULLIf none.
END_WHILE
IF (new is not empty)
THEN
Additto Groups .
END_IF
END_FOREACH
ENDREPEAT

/I Generate the new DFA
DFA Min_DFA

FOREACHGROUP Gin Groups)
BEGIN
Min_DFA.CREATE(NEW_STATE)
FOREACHCHARACTER CH)
BEGIN
ADD transition on NEW_STATE on Cto the group in which
the destination exists.
END_FOREACH
END_FOREACH

For example if we have as an input to the algorithenfollowing DFA represented in
transition matrix of ExTab 2-8A:

ExTab 2-8A: DFA transition matrix

Lookah)
State 5 ookahead Accepting

2 No
No
No
Yes
No
- Yes
- Yes
Yes

(The Current State)

NI O W = O
NN O W e

ExTab 2-8B: DFA transition matrix

Initially, the matrix is partitioned into

two parts; one for the accepting states (§; State D - Group
1, 2, 4) and another for the non-acceptin v 1 2

states (3, 5, 6, 7). ExTab 2-8B with th¢ 1 4 5 0
illustration. i ;

~N O O1 W| = Do
~N O |
|

ExTab 2-8C: DFA transition matrix

Starting with D column, states 0, 1 and § gi4te D Group
all go to a state in partition 0 on a D, bu 0 1 5
state 2 goes to partition 1 on a D, and1 A . 0
thus state 2 must be removed from A A 5
partition 0. Continuing in the sam
manner, state 3 is also distinguished bya2 3 - 2
D. Changes are illustrated in ExTab 2-8 :; é _ 3

6 7 - 1

7 7 -

ExTab 2-8D: DFA transition matrix

Now, going down the dot)(column, the State D Group
dot distinguishes state 1 from states 0 ar Lb 1 5
4 because state 1 goes to a state iq 4 9 0
partition 1 on a dot, but states 0 and 4 0, 1 5 A
to states in partition 2. The new partitiong
are on the last column in ExTab 2-8D. é 3 - g

5 6 -

6 7 - 1

7 7 -

ExTab 2-8E: DFA transition matrix

Going through the array a second timg, gigte D Group
column by column, now D distinguisheg 0 1 5 0
state 0 from state 4 because state 0 gdes
to a state in partition 4 on a D, but state 44 4 2 3
goes to a state in partition O on a D, andy 4 5 4
here no other states can be distinguish (é 3 . 5
from each other, so it's done. So the finzni3 — - 3
partition looks like ExTab 2-8E. = 5 -

6 7 - 1

7 "’ -

ExTab 2-8F: DFA transition matrix

Finally we build a new transition matrix. Eact Stat D
partition is a single state in the minimized DFA ate
and all next states in the original table ane0 4 2
replaced by the partition in which these states gre 1 -
found. Hence, for example, states 5, 6 and 7 gre 3 -
all in partition 1. All references to one of thesg¢3 - -
states in the original table are replaced by |a 5 1
reference to the new state 1. So the new transitijon 5 2
table looks like ExTab 2-8F.
Compressed DFA
+virtual GenerateCodeCppl)
+uirtual GenerateCodaCH)
+virtual GenerateCaodalaval)
+virtual GetMextState()
& AN
Compressed DFA Pairs Compression Compressed DFA Redundancy removed
-Transition Table : int™ -Row Map - intl]l
+overide GenerateCodeCpp() -Column Map : int[])
override GenerateCodaCHE() FTransition List WVectar @ int[][]
+ovarmide GenerateCode Javal) +override GenerateCodeCpp()
+roveride GethlexiState() +ovarnde GeneraleCodeC#)
+override GeneraleCodeJaval)
+override GathMextState()

Figure II-12A: Class Diagram for the Compressed DFA

The DFA generated from the scanner generator iayawepresented in the form of a
two dimensional transition matrix with one dimemsi@presenting the states and the
other representing the input; an element in therimmaidexed as (state, character)
merely determines the next state of the DFA if gdaoe input character has been
encountered while the machine is in the given slateas been noticed that several
columns (and perhaps rows) are redundant in thétires matrix. Such redundancy

becomes significant when dealing with Unicode (asour case) where the DFA

transition matrix becomes extremely large.

01234567829

1111111111
1111111111
2222222222
2222222222
4444444444
4444444444

ExFig 2-11: A transition matrix suitable for compression
Several techniques were devised to remove sucindadgy, that is, to compress the
transition matrix. Amongst the techniques used setwo in our package:

ab~hwdhNhEF O

Pairs Compression (with its two flavors, normal and default) aedundancy
Removal Compression

Another choice given to the user is to let the pgekchoose thBest Compression
technique in terms of the compression ratio. Wél ginge more details about the two
techniques used in our package in the following $wbsections:

2.9.1 Redundancy Removal Compression

The basic idea behind this technique is to create $upplementary arrays to
eliminate the redundant rows and columns.

ColumnMap | 0------ 010--- 0222222220 ---- 030----- 0
Row Map 0 -1 3 1 -1
1 -1 2 1 5
2 -1 -1 2 5
3 -1 -1 2 -1
4 -1 -1 4 -1
4
The Compressed Matrix

ExFig 2-12: Redundancy removal compression

All the redundant rows are eliminated into one r@le resulting unique rows are
grouped together in the compressed matrix. Suchix@dnnot be accessed directly
using the state number; rather it is accessed usit\gw map’ that is, a one
dimensional array indexed by the state number aidirtg in each of its elements a
pointer to a row in the compressed matrix.

Thus, the transition matrix is now accessed intlyein two steps. Use the state
number to index the row map and to get a pointdh#éoappropriate row. Then use
this pointer to access the appropriate rowlA indicates a "Hell" state.

The same steps are applied to columns to elimitfageredundant ones, using a
"column map: The final transition matrix is shown in ExFig 2:1

2.9.2 Pairs Compression

This technique gives a better compression ratithéf transition matrix is sparse,
however, access time is usually longer. The basa ibehind this technique is to
convert the rectangular transition matrix t@mggedmatrix. The new matrix is simply
a group of one-dimensional rows of unequal length.

The compressed matrix is represented in memomy asray of pointers; the length of
such an array equals the number of rows in thenaiignatrix. Each pointer points to
a row, represented as a one-dimensional array, ewtiex different rows are not
necessarily the same length. ExFig 2-13 illustrdtedogical memory organization.

0 » 4 | 'a,1|'b,2]|'c,2]|'d,2

1 » 3| 'b,3|'c,2|'f,2

2 » 5| 'a,0[|'b,2]|'c,3|'d,2|'"f,1
3 M2 ¢ 11,2

4 0 |

A 4

1121212]3]1

ExFig 2-13: Pairs compression

Each row begins with an integer that determinesntimaber of character / next state
pairs in the row. If the number at the beginns@ ithen the row is not compressed at
all, that is, the compressed row is the same asrigmal one. Such case occurs when
the compressed row is more memory extensive tharotiginal row itself. The row
is, therefore, accessed normally by using the imghairacter as an index in the one-
dimensional array that represents the row.

In the typical case, however, the number at thanbpagy of the row is a positive
integer that determines the number of pairs incivapressed row. The row is then
searched pair by pair for the right one. If thersleas terminated without a result then
the next state is the "Hell" state,-dr.

Accessing the transition table this way is appdyed(n), but its compression ratio is
much better if the original transition table is iga

The code generation phase is the last step incdr@nsr generation process. By then,
the regular expressions, which the user provideghasput, have been converted into
a NFA, converted into a DFA, minimized, and finalpmpressed by any of the

available compression techniques (or may be nopcessed at all).

Each of the compressed DFA classes (or the uncasguleDFA class) has its own

code generation functions. Generally speaking,ste@nners generated by any of the
three possibilities (DFA, Pairs Compression, Redmeg Removal) are essentially

the same except for the transition mechanisms,ishabe mechanism by which the

machine switches from one state into another.

Every scanner can be divided into three parts: ta@sition table, the input
mechanism and the driver.

* The transition table is a two-dimensional datacitne, usually represented as a
rectangular matrix or a jagged matrix; it deterrsitiee next state of the scanner
given the current state and the current input symbo

* The input mechanism is the mechanism by which tharser deals with the input
data; its functionality includes dealing with theritbde encoding schemes in a

transparent manner, keeping track of the curreet iumber and column number
in the input file for buffering and error handlipgrposes.

» The driver is the software module that invokes itiput mechanism to read the
input file symbol by symbol. It uses the transititable, together with a data
variable that keeps track of the current stateextecute the DFA that represents
the regular grammar specified by the compiler dgwel. When the machine
reaches an accepting state, it executes the ajgprction code associated with
the given state.

Compressed DFA DFA
«Decomes» [Tansition Table - int[[

+virual GenerateCodeCppl() - — = — — — — — — — +GenerateCodeCppd)
+virual GenerateCodaCi) +GanerateCodaCil)
+uirtual GenerateCodeJaval) +GenerateCodeJaval}
+virual GetNextState() +GetMNextSiate()

Compressed DFA Pairs Compression Compressed DFA Redundancy removed

=Transition Table : int™ -Fow Map ;- int]]

+override GenerateCodeCpp() -Column Map : int[])

override GenerateCodeCH() -Transition List Vectar @ int[)[]

+override GenerateCodeJaval) +overnide GenerateCodeCppi)

+overmide GetNextState() +override GenerateCodeCi()

+override GeneraleCodelaval)
+override GetMextState()

Figure II-12B: Class Diagram for the Compressed DFA

We will describe each of these components sepgaatl then we will provide a
complementary explanation of tBeanner class itself.

2.10.1 The Transition Table

The structure of the transition table depends encttimpression settings specified by
the compiler developer in the input file. More distaabout the compression of
transition tables may be found in the "DFA Compi@sssection (2.9).

2.10.1.1 No Compression

In case no compression is applied to the DFA, #reerated transition table is merely
a 2-dimensional matrix where the row index repres#re state and the column index
represents the input symbol. Determining the n&tess achieved by substituting the
current state and the current input symbol in tve and column indexes respectively;
the resulting matrix cell holds the next stateha&f tnachine.

For example, in C# the transition table will beidedl as follows:

private int [,] transitionTable = new int [numberStates, sizeCharSet];

Where numberStatess the number of states in the DFA representirg rigular
language specified by the compiler developer, sizéCharSeis the size of the
character set to be used by the generated scanner.

Accessing the table will be as follows:

currentState = transitionTable[currentState, curren tSymbol];

2.10.1.2 Redundancy Removal Compression

In case of Redundancy Removal compression, thsitiam table is compressed into
a 2-dimensional array whose size is smaller thaeqoial to the original matrix size.

The new matrix is obtained by removing the redubaaws and columns from the

original one. Two linear vectors (1-dimensionalags) are used to index the new
compressed matrix:

 The Row Maplits size equals the number of states in the algmatrix. It may
be indexed by the state number to determine, fiven current state, which row
in the compressed matrix is to be used in nexe statkup.

* The Column Maplts size is equal to the size of the characteok#ie scanner. It
may be indexed by symbols to determine, for a gigarmrent symbol, which
column in the compressed matrix is to be usedakifmg up the next-state.

For example, in C# the transition table will beidedl as follows:

int [] rowMap = new int [numberStates];
int [] columnMap = new int [sizeCharSet];
int [,] transitionTable = new int [newRowsCount, newColumnsCount];

Where numberStates is the number of states in the DFA representirgy rdgular

language specified by the compiler developgreCharSet is the size of the
character set to be used by the generated scamw®owsCount is the number of
rows in the new compressed matrix, aadColumnsCount is the number of columns
in the new compressed matrix.

Accessing the table will be as follows:

currentState = transitionTable [rowMap[currentState
columnMap|[currentSymbol]];

2.10.1.3 Pairs Compression

In case of Pairs Compression, the transition tebmpressed into a jagged matrix
together with a linear vector (1-dimensional arnafjpse length equals the number of
states in the DFA. Each element in the linear vegptints to one of the rows in the
jagged matrix, that is, it determines which of tbes in the jagged matrix is to be
used while looking up the next state.

For example, in C# the transition table will beidedl as follows:
int [][] transitionTable = new int [numberStates][];

where numberStates is the number of states in the DFA representirey rdgular
language specified by the compiler developer.

Accessing the transition table is not as easy aptévious two techniques. Since the
matrix is jagged, we cannot lookup the next statsitmple array indexing. We have

to search the appropriate row (the one correspgnttinthe current state) as if we

were searching a linked list. This is done by theedl.

2.10.2 The Input Mechanism

LEXcellent generates an input stream class, calmbleStream , to act as an
interface between the generated lexical analyzdri@ninput files. The main tasks
performed byCodeStream are:

» Decoding the Unicode input files in a transpareranner, that is, the lexical
analyzer shouldn't care whether the input filaighie Unicode format or not.

» Keeping track of the current line number and colummber so that the lexical
analyzer might make use of them is error handlmngtleer purposes.

* Giving the lexical analyzer the capability to boaki positions within the input
file. The lexical analyzer can backup an arbitrauynber of positions in a stack to
be restored later. This gives the lexical analyugher flexibility in looking ahead
and backtracking.

Now, we shall give a brief description of tB®deStream class, we shall assume —
without loss of generality — that the output langgiaspecified by the compiler
developer, is C++. However, such claim should neffEct our description since all
the lexical analyzers generated by Xcellent share essentially the same structure.

2.10.2.1 Constructor
TheCodeStream class has only one constructor:

CodeStream(tifstream& _stream):
stream(_stream),
curlineno(1),
curcolumn(l),
nextlineno(1),
nextcolumn(1),
position(0)
¢

It takes an STL input stream as a parameter amdssibin the local variablgtream .
Besides, it initializes the data members of thes<lao that the current position is
adjusted to the beginning of the input file and time and column numbers are
initialized by 1.

2.10.2.2 Data Members

Table 11-8: CodeStream Class Data Members

las

Data Member Description

private tifstreamé& The STL input stream wrapped by the code streashdtild

stream be obtained through the constructor.

private stack< int > | A stack that allows the lexical analyzer to backug current

lines line number. Changes in that stack are always agaoiad|
by changes in other stacks to accomplish the dviarsit of
backup-restore of positions.

private stack< int > | A stack that allows the lexical analyzer to backup current

cols column number. Changes in that stack are alfays
accompanied by changes in other stacks to accdmihies
overall task of backup-restore of positions.

private stack< int > | A stack that allows the lexical analyzer to backug current

positions stream position (in bytes). Changes in this staekadways
accompanied by changes in other stacks to accdmihies
overall task of backup-restore of positions.

private int Holds the line number at the beginning of the tastsumed

curlineno token.

private int Holds the column number at the beginning of the |

curcolumn consumed token.

private int Holds the line number at the end of the last corezlitaken.

nextlineno

private int Holds the column number at the end of the last woesl

nextcolumn token.

DfiV?tl_te int The current stream position (in bytes). That ig tlumben

position

of bytes that have been consumed up till now.

2.10.2.3 Methods

Table II-9: CodeStream Class Methods

Methods Description

int CurrentLineNo() const Returns the line number before the last consumed
token. It merely returns the value of thelineno
data member.

int CurrentColumn() const Returns the column number before the |ast
consumed token. It merely returns the value offthe
curcolumn data member.

int NextLineNo() ~ const Returns the line number after the last consufned
token. It merely returns the value of the
nextlineno data member.

int NextColumn() const

token. It merely returns the value of

nextcolumn data member.

TCHAR Peek()

Peeks the input stream, that is, returns the
symbol without consuming it. The symbol may

Returns the column number after the last conSlﬂed

e

next

be

more than one byte depending on the encofling

scheme. The positon , curlineno and
curcolumn variables aren't affected by this
method.

Void Advance Advance the position of the stream to after thet jex
symbol. That is, skip the next symbol. It makes pne
symbol-size jump in the input file.

TCHAR ReadChar() Read the next symbol and advance your posifion.
The symbol may be more than one byte depending
on the encoding scheme. Theosition
curlineno and curcolumn variablesare affected]
by this method.

Void Backup() Save the current position, line number and colgmn
number values in the appropriate stacks.
Void Restore() Restore the last saved position, line number jJand

column number values from the appropriate stacks.
That is, pop the tops of the stacks.

Void ReplaceLastBackup() Delete the last saved position, line number jand
column number values from the appropriate stacks.
Then save the current position, line number fnd
column number values.

Void RemovelastBackup() Delete the last saved position, line number jnd
column number values from the appropriate stagks.
Void SaveCurrentPosition() This function should be called by the lexigal

analyzer before consuming any token. It updftes
the line and column numbers by making fhe
current column and line numbers equal to the pext
column and line numbers respectively. That is | set
the current line and column numbers to fhe
beginning of the next token.

2.10.3 The Driver

The driver is the component of the lexical analydeat keeps track of the current
state and invokes the input mechanism (tbéeStream class) to get the next symbol
from the input file. Then, given the current statel input symbol, it looks up the
transition table for the next state.

During the process of consuming a token, the drkesps track of the last accepting
state it had encountered. When it eventually ciagfte an error state it backtracks to
that last accepting state and it executes the assleciated with that state. This allows
the driver to match the longest possible token rgitiee regular definition. For
example, on confronting the input

intex

it matches thédentifierintex rather than th&eywordint . After executing the action
code, the driver will go on consuming the next tokenless the action code does
make a return statement.

On the other hand, if the driver doesn't encouagraccepting states before entering
the error state, it executes the invalid-tokenaactihat is, the action determined by
the compiler developer to be executed when an ioshvaken is consumed. Such
action must be either a function to be called walae to be returned. The driver must
return immediately after executing the invalid-tolaction.

Execution continues until the driver encountersBd#- (End-Of-File) symbol, where
it executes the EOF-action and returns immediatalyther invocation of the driver
will do nothing but executing the EOF-action agaSimilar to the invalid-token

action, the EOF-action must be either a functiobdaalled or a value to be returned.

Initizlize:
Current state = Start state
Last accepting state = Ermmor state
Lexeme =

-

-

»

Read the next input
symbol from the

Straam
- Yes @
My
¥
v, Mo Append the input symbaol to the
=s laxemea,

:

Using the cument state and the input
symbol, access the transition table to
update the current state.

» *

Execute the EOF action

Set
s | Last accepling state =
Current state

Is the current state an
accepting state?

Is the current state an
error state?

Last accepting
tate = Error state 2,

l Yes

Restore the laxermea and
thea inpul stream to the
last accaptiing state.

Yes

Execute the invalid-
token action

h 4
Execute the action code
of the last accepting Faturn
state.

Figure lI-13: Driver Flowchart

v

Note that if the action code of the last accepsitage doesn't return, the driver will not
return until an invalid-token or an EOF is encouade

2.10.4 The Lexical Analyzer Class

Now we will give a brief explanation of the structwof the lexical analyzer class. The
name of such a class is provided as an optiondarciiXcellent input file. The class
encapsulates the driver as a member function (whase is a developer option, too);
and encapsulates the transition table as a mendmible, besides other helper
functions and data members.

2.10.4.1 Constructors

The constructor of the lexical analyzer class pem necessary initializations. It
takes, as a parameter, an STL input stream, and ¢hks the constructor of its
CodeStream oObject and passes the former STL stream as a pteato it.

Other initializations include setting the last guoeg state to the error staté ,
setting the current state to the start state ifdlexsetting the backup length @ and
negating the EOF flag. Such initialization stepf & repeated before reading each
token.

<LexicalAnalyzerClassName> (tifstream& stream) :
fin(stream),
lastAccepting(errorState),
currentState(startStatelndex),
backupLength(0),
endOfFile(FALSE)
{

2.10.4.2 Constants

The generated lexical analyzer class contains afssinstants whose values are set
by LEXcellent at generation time. These are listed in tableédll-1

Table II-10: Lexical Analyzer Class Constants

Constant Description

private static const | The index of the start state. The default valu® is

int startStatelndex

private static const | The first symbol in the character set of the lelk|ca

UTCHAR startSymbol analyzer, provided as an option in tigXcellent input
file.

private static const | The last symbol in the character set of the lexicallyzer

UTCHAR finalSymbol provided as an option in theE xcellent input file.

private static const | An array whose size is equal to the number of stdte

BOOL accepting]] determines, for each possible state, whetheratigpting
or not.

Besides, the lexical analyzer class contains thaesition map as a constant private
member. The data members declared differ accorirthe compression technique
utilized, as mentioned in thEransition Tablesubsection.

2.10.4.3 Data Members

Table lI-11: Lexical Analyzer Class Data Members

Data Member Description

private CodeStream fin The code stream that the lexical analyzer deals
with.

private TCHAR currentChar The most recently consumed character obtajned
from the input stream.

public int lastAccepting The last accepting state encountered.

private int backupLength The number of characters consumed since thq last
accepting character.

private int currentState The current state.

private tstring lexeme The lexeme of the most recently consumed tokgn.

private BOOL endOfFile Determines whether the end of file has bgen
encountered or not.

2.10.4.4 Methods

Table Il-12:

Lexical Analyzer Class Methods

Function Name

Description

private static int

indexOf(UTCHAR c)

Checks if the given character is in the charaagn s

if so, return its numeric order.

CodeStreamé& CodeStream()

Returns a reference to the code stream used 4
lexical analyzer. It merely returns the value of
private data membdn .

y the
th

tstring Lexeme()

Returns the lexeme of the most recently consumed

token. It merely returns the value of the priv
data membekexeme .

nte

Besides, the lexical analyzer class contains anpetexless function that represents
the driver of the lexical analyzer. The name aredrd#turn type of the driver function
are provided by the compiler developer as optiarthé LE Xcellent input file.

As was stated in the introductory part of this doeut, the main goal behind our tool
is to facilitate the compiler construction procdsst that end we provide — both in the
lexical analysis and parsing phases — a set okhelfities that automate some tasks
normally encountered during the process.

2.11.1 Graphical GTG Editor

The set of patterns that the lexical analyzer reizmg are specified as regular
languages. Aegular languageover a certain character set is the set of atiggrover

that character set that have the same patterrpagtiaular regular expression, i.e., a
language that can be defined by a regular expregsiaalled a regular language.
Relying only on regular expressions to specify thgular patterns of the lexical

analyzer can often be cumbersome and error-prodeet!, not every regular pattern
is best specified by a regular expression. In ssitvations, it is very hard to deduce
the regular expression of a particular regular goatt In such cases, using an
alternative — yet equivalent — method to expresgdigular pattern can be helpful and
straightforward. A generalized transition graph (&Ts one such alternative.

2.11.1.1 Definition
A generalized transition graph (GTG) is a collectas three items:

1. A finite set of states, with one or more start esabnd some (may be none)
accepting (final) states.

2. An alphabet of input letters (the character set of the inpuiguage).

3. Directed edges connecting some pairs of stated) &dmeled with a regular
expression.

For example, we can represent the language ofradhs over the alphabet{b, c}
that begins witlbb or have exactly twa'’s by the GTG in ExFig 2-14:

ExFig 2-14: Example GTG

It is easy to see that every DFA is a GTG and eMék is a GTG, as well. However,
the converse is not true.

M
Figure lI-14: RegEx as a GTG

It is also straight forward to see that any regabgression can be specified by a GTG
with two states, one as a start state, and the athe final state, and a single edge
from the start state to the final state having tiegular expression as a label. Figure
lI-14 illustrates. These observations are the kelyirl the feasibility of the tool, as
will be later illustrated.

In general, automata provide a mathematical waydedcribing algorithms for
recognizing regular patterns. Recall titerministic Finite AutomatéDFAS) give
the description of the algorithm in a deterministianner. NFAs, TGs and GTGs are
nondeterministic. It was proved that for any lamgg expressible via a regular
expression, there exists a DFA that recognizess#ime language (and thus a GTG
also exists). The basic task of the lexical analgemerator is to find such a DFA for
a set of regular expressions. Finding the regutpression corresponding to a given
GTG is the main task of the GTG graphical tool. Tigorithm employed in the
process is described in a later section, firs8yimportant to illustrate the need for
such a tool.

2.11.1.2 Why GTGs?

Some regular languages are originally specifiedairrather procedural manner.
Deducing regular expressions for such languagasti®ften straightforward. The ‘C
Comment’ regular language is an example. Any stimghat language begins with
“/*" and continues until reading the first “*/”. Aseen, the description takes the form
of a procedure and thus, the associated regulgugme is more suitably described by
means of an automaton rather than a regular express GTG for this language is
shown in figure II-15.

Figure 1I-15: The "C Comment" Regular Language

Another example is the language ‘EVEN-EVEN’ of silings over the alphabe&{
b} with even number o&’s and even number &'s. Specifying an automaton for this
language is far easier than deducing the correspgndgular expression. The GTG
for ‘'EVEN-EVEN'’ regular language is shown in figuilel6.

Figure lI-16: The "Even-Even" Regular Language

Thus, accepting the specification of regular laggsan the form of GTGs, as well as
regular expressions, makes the specification psoeasier and more intuitive. It
greatly reduces the errors committed if one treededuce the regular expressions of
many regular languages.

2.11.1.3 GTG to Regular Expression: The Algorithm

As previously stated, a regular expressionan be represented as a GTG (look at
figure 11-14). Thus, if we can convert any gendgdlG to an equivalent GTG having
the same structure depicted in figure II-14, we cohtain the corresponding regular
expression. We can repeatedly reduce the numlstatfs in the given GTG, without
changing the language it accepts, until we gesthecture depicted in figure. This is
illustrated in the following pseudo code:

Given a GTG G = (S, E), where S = {s S 2 .., S .} is the set of
states, and E is the set of edges, with each edge | abeled by a
regular expression.

Step 1:

Create a non-enterable start state s o and for each other start state
s;, add the edge (s o S j), label it as e, and remove the start
attribute from s i By the end of this step, the GTG will have a
unique, non-enterable start state.

Step 2:

Create a non-exitable final state s n+1 and for each other final state
s;, add the edge (s i» S n+1) and label it as e, then remove the final
attribute from s i By the end of this step, the GTG will have a

unigue non-exitable final state.

Step 3: (Elimination)

WHILE (S—{S S n+}**)do
Select a state s jfrom S.
IF there is a self-edge on s j labeled with M,
THEN set SelfLabel = (M)*
ELSE set SelfLabel =«
FOREACH edge (s« s ;) labeled with R, DO
FOREACH edge (s , s) labeled with Q, DO

Let NewRegex = R.SelfLabel.Q

IF there is an edge (s w S m) labeled with OldRegex
THEN set the label of that edge as OldRegex | NewRegex
ELSE add the edge (s k'S m) With the label NewRegex

to the set E

END_FOREACH
END_FOREACH

Remove state s jfrom S
END_WHILE
IF there is no edge between s oand s ., then the language of this GTG
is ..
ELSE the regular expression is the label of that ed ge.

For the sake of illustration, we apply the stepshefalgorithm on the “C Comment”
GTG. Initially, we add to the original GTG in figatl-15 the non-enterable start state
and the non-exitable final state according to stepsid 2. We obtain the equivalent
GTG shown in ExFig 2-15A. Although these steps semmecessary here since the
original start and final states have the desir¢xbates, not every GTG possess this
characteristic.

[/*] Wk /7

[/*]

ExFig 2-15A: Converting the "C-Comment" regex to a corresponding GTG

After that, we choose to eliminate state 1 whiatkily has a single incoming edge, a
single outgoing edge and no cycles. We simply ciamede the regular labels of the
two edges. The GTG obtained after this step is shovwExFig 2-15B. Recall that
represents the empty string and consequently thgltref concatenating with
i

[~/*]

ExFig 2-15B: Converting the "C-Comment" regex to a corresponding GTG

State 2 has one outgoing edge labeled with “*’elresdge with label [**], and two

incoming edges labeled “/*” and [**], respectiveRerforming concatenation gives
us the labels “/*'[**]**” and [M*]["*]**". The G TG is shown again in ExFig 2-
15C after eliminating state 2.

//| [/\/] [/*] * 77 %1

N SR AKT K %I
,< . > /X7 [~*]

ExFig 2-15C: Converting the "C-Comment" regex to a corresponding GTG

Eliminating state 3 is rather straightforward. ExR+15C shows that the GTG after
the elimination of state 3 becomes:

4}@ \\/*n[/*]*//*n(*nl [/\/*] [/*]*n*n)*/ @
0 o 4 g

ExFig 2-15D: Converting the "C-Comment" regex to a corresponding GTG

After eliminating state 4, the final GTG results, ilustrated in ExFig 2-15E. The
label on the edge (0, 5) is the regular expressiothe “C Comment” language.

4’@ \\/*//[/*]*//*//(*//l [/\/*] [/*]*II*II)*/ @

ExFig 2-15E: Converting the "C-Comment" regex to a corresponding GTG

2.11.1.4 Implementation Details

The GTG is represented as a list of states. Eaatle sbntains a list of the edges
emanating from that state as well as a list of ¢dges entering it. There is an
additional field for the self-edge of that statdisTfield is kept NULL if no self-edge
exists. Each state contains two Boolean fieldsthicate whether the state is a start
and/or a final state. Each edge contains pointetiset source and destination states, in
addition to a string representing its label. Whethe label is valid or not is checked
once and the result of the check is stored alorif thie edge to help speed up the
application. The validity check is made again ontyen the label is changed or the
character set of the GTG is changed.

Since this is a visual tool, additional geometratadare kept in the data structure. For
example, each state containsPaint structure to keep track of the x and y-
coordinates of the center of that state. Furtheesngeometric data are cached and
maintained along each edge to help speed up tloeigxe of the program.

The GTG-to-Regular Expression algorithm is impletedrwith minor modifications.

For example, we never try to eliminate those st#tas are not reachable from the
unique start state or those that have no pathletaique final states. This reduces
the execution time of the algorithm. Specificallye perform, as a preprocessing
stage, a depth-first search starting from the umigtart state to identify those states
that are reachable from the start state. Then, evfonn a depth-first search starting
from the unique final state (the orientation of #aiges is reversed in that case) to

identify those states that have paths to the unitue state. The result of both
searches is kept as an array of Booleans indicatingther a given state can be
ignored from elimination or not.

2.11.1.5 Geometric Issues

During the development of the user interface of gha@phical GTG tool, we faced
certain geometric problems, but we were able toresdhem successfully and
elegantly. The following subsections contain dgxmns of some of these problems
and how we solved them, both the idea and the igxgation. However, we start by
a brief description of the Ul of the GTG tool.

Each state is represented as a circle of a cedamnstant radius R. Edges are
represented by lines connecting the circles oftweestates as shown in ExFig 2-16.
The label of each edge has the same orientatitraasdge.

[*a]

ExFig 2-16: The GUI of the GTG Editor - States

Edges

As seen in the above figure, each edge has the daewtion as the vector connecting
the start state and the end state. The problem imd the coordinates of the end-
pointsa, b of a given edge, given the coordinates of thearsmi, c, of the two
states the edges connect. As a further consttamijne segment should have a small
offseth on the perpendicular vector of the vector conngctihe two centers; andc,

so that if the edge of the inverse direction isspre, the two edges do not cover each
other. (For an example, look at the two edges batwhe stateS$1 andS2 in the
figure above). The end-poiat must lie on the circle of radius R arouagdand the
end-pointb must lie on the circle of radius R aroutid The whole issue is illustrated
in ExFig 2-17.

ExFig 2-17: The GUI of the GTG Editor - Edges

We now show how to compute the coordinates of thiaet@. Sincea lies on the
circle of radius R around, the line segmenta has length R (a constant value). The

line segment@ (which is normal to@) has lengthh (a constant value). Let

denote the length of the line segmerk. Thus,w can be computed by applying
Pythagorean Theorem on the triangi@ k. The whole picture becomes:

ExFig 2-18: Finding the endpoints of an edge

The value of w can be computed and fixed at contpile. We reach the poiatfrom

c1 by taking a stepv along the direction of the vectdf, followed by a stefn along
the direction of the perpendicular veciorThe equations are listed below:

w=+/R?-h?

All the remaining computations are performed atira.

V = c, - C;
n= (—yv , X\/) (normal vector ofY/)

M :” n ”:”V ” (magnitude of both vectors is the same)
_ 1 -
U, =— (WV +hn)
M
a - Cl + uSI’C
1 -
Uyee = — (—WV +h.n)
M
b=C, +U
The above computations guarantee that the edgkeofetverse direction (the edge
from statec, to statec;) takes the small offsdt on the reverse direction of the

perpendicular vectdi , computed above. This is because the vector frpta c; is
the inverse o¥/ . Thus, the new normal will be the inversdbf.

Selection of States and Edges

When the user clicks the button of the mouse, theraiing system informs the
application that the user pressed the button ofrtbese and supplies the coordinates
of the mouse pointer at that time instance. Thd®lpro here is to determine whether
that event occurred when the mouse pointer wadenie circle of a given state or
near an edge. In addition, we need to determinesgecific state or that edge that
contained the mouse pointer. This is needed bedhesaser might want to change
the label of the state, change the start/finalbattes of the state, change the position
of the state on the screen, remove that state gehtne label of the edge, or remove
that edge. The solution of the problem seems pestty. We just loop through each
state and check whether that state contains thesenpainter (the state contains the
mouse pointer if and only if the distance betwdendenter of the state and the mouse
pointer is less than or equal to R). If no statetams the mouse pointer, we just loop
through the edges and check whether the mouseepdies on the line segment
defined by that edge or not. The routine was impleted using these ideas, and was
thoroughly tested, but matters did not go as wetended. There was no problem
selecting a state. However, edges were never sdlegcept when the direction of the
edge was strictly vertical, strictly horizontal onaking a 45° angle with the
horizontal. After further analysis of the situatiome discovered that although the
pointer of the mouse visually lies very near to éwen lies exactly on) the line
segment of the edge, the coordinates of the motesangegral and would rarely
represent a point on the line at the specified ordimate of the mouse pointer. The
situation is illustrated in the following figure:

ExFig 2-19A: The edge-clicking problem

To solve this problem, we enclosed each edge immaginary rectangle having one

side parallel and equal in length to the edge, thedother perpendicular side has a
predefined, fixed length 2U. The situation is ithased again on the next page. An
edge is selected if no state is selected and thesenpointer lies within the enclosing

rectangle. It is worth noting that setting U = Ql\wie the same as testing whether the
mouse pointer lies on the edge defined by thatdegment. U is chosen large enough
so that the area sensitive to mouse clicks ardum@dge has a suitable value.

The line segment passes through these points dmynwhe line segment is vertical,
horizontal or making a 45° angle with the horizdnta

But how can we determine if a given point Z lieanthe edge defined by the two
points P and Q?

ExFig 2-19B: The edge-clicking problem

Let z denote the vector from the point P to thenpdi Let v be the vector from the
point P to the point Q, and n be the vector perpemhar to v. We resolve z into its
components along v and n. This is illustrated aftgure below. Thus, we can write z
as a linear combination of both vectors v and fobews:

z=MIv+KIn

If ||Kn|| £ Uand 0< M < 1, then z lies inside the enclosing rectanglee@tise, it is
outside.

ExFig 2-19C: The edge-clicking problem
M can be found by forming the dot product of bottesiby v:
zlv=MvIlv

Dividing both sides by.v gives uaM:
M=2Y
A

Of course, we must check that P and Q are not ic@nt so thatv.v is nonzero.
Similarly, ||Kn]| can be found by forming the dot product of bottesiby n:

zln=Knln

Dividing both sides by.ngives uK:
K :Z_n
n.n
Hence,

[Kn =[] dinf

3. The Parsing Phase

The bulk of this part is devoted to parsing methdlat are typically used in
compilers. We first present the basic concepts) the techniques we used in our
tool. Since programs may contain syntactic erraes extend the parsing methods so
they recover from commonly occurring errors. Weoalsresent the input file
specifications as a guide to the user to build rsgrausing our tool, as well as the
helper tools we provide to aid the user adjustitipeit grammar to suit the parsing
methods we provide.

3.1.1 A General Introduction

Every programming language has rules that presthi&esyntactic structure of well-
formed programs. In Pascal, for example, a progeamade out of blocks, a block
out of statements, a statement out of expressansxpression out of tokens, and so
on. The syntax of programming language construatsbe described by context-free
grammars or BNF (Backus-Naur Form) notation.

A context-free grammar (grammar, for short), also known B&NF (Backus-Naur
Form) notation, is a notation for specifying the syntaxa language. A grammar
naturally describes the hierarchical structure o&nyn programming language
constructs. For example, an if-else statementathe form

if (expressior) statemenelsestatement

That is, the statement is the concatenation ok#yavordif, an opening parenthesis,
an expression, a closing parenthesis, a staterttemtkeywordelse and another
statement. (In C, there is no keyword then.) Udimg variableexpr to denote an
expression and the variabé¢émtto denote a statement, this structuring rule can b
expressed as:

stmt— if (expr) stmtelsestmt

in which the arrow may be read as "can have thei'foSuch a rule is called a
production. In a production, lexical elements like the keywifrand the parentheses
are calledterminals, variables likeexpr andstmtrepresent sequences of tokens and
are callechon-terminals [2].

A context-free grammahnas four components:

1) A set of tokens, known dsrminal symbols.
2) A set ofnon-terminals

3) A set ofproductionswhere each production consists of a non-termualed the
left side of the production, an arrow, and a seqeeaf tokens and/or non-
terminals, called the right side of the production.

4) A designation of one of the non-terminals as thet stymbol.

We follow the convention of specifying grammarslisging their productions, with
the productions for the start symbol listed fildte assume that digits, signs such as
<=, and boldface strings such akile are terminals. An italicized name is a non-
terminal and any non-italicized name or symbol rhayassumed to be a token. For
notational convenience, productions with the sam@terminal on the left can have
their right sides grouped, with the alternativehtigides separated by the symbol |,
which we read as "or".

3.1.2 Advantages of using Grammars

Grammars offer significant advantages to both laggudesigners and compiler
writers[2].

« A grammar gives a precise, yet easy-to-understayitactic specification of a
programming language.

* From certain classes of grammars we can automigticahstruct an efficient
parser that determines if a source program is syo#dly well-formed. As an
additional benefit, the parser construction proa@ssreveal syntactic ambiguities
and other difficult-to-parse constructs that migthierwise go undetected in the
initial design phase of a language and its compiler

* A properly designed grammar imparts a structura psogramming language that
is useful for the translation of source progrants oorrect object code and for the
detection of errors. Tools are available for cotimgrgrammar-based descriptions
of translations into working programs.

» Languages evolve over a period of time, acquiriegy ©onstructs and performing
additional tasks. These new constructs can be atid@dlanguage more easily
when there is an existing implementation based graemmatical description of
the language.

In our compiler model, the parser obtains a stahtpkens from the lexical analyzer,
as shown in figure 1lI-12], and verifies that the string can be generatedhley
grammar for the source language.

. token ‘ ‘
L lexical parser parsc rest of | inicrmediate
rogram analyzer ¢ e
progr Y et nexd rec | front end [representation
token
symbaol
table

Figure llI-1: Parser-Lexical Analyser Interaction

We expect the parser to report any syntax erroanimtelligible fashion. It should
also recover from commonly occurring errors so tihatan continue parsing the
remainder of its input.

There are three general types of parsers for grasitia Universal parsing methods
such as the Couke-Younger-Kasami algorithm andeffarklgorithm can parse any
grammar. These methods, however, are too ineftiteense in production compilers.
The methods commonly used in compilers are clask#is being either top-down or
bottom-up.

As indicated by their namemp-down parsersuild parse trees from the top (root) to
the bottom (leaves), whilleottom-up parserstart from the leaves and work up to the
root. In both cases, the input to the parser iarse@d in one direction (according to the
language), one symbol at a time. Our tool implemdnto top-down parsers, the
details of which are covered in the next two se&io

The last concept to present in this brief introdwctis that of a parse-tree and a
syntax-tree.

3.1.3 Syntax Trees vs. Parse Trees

During analysis, the operations implied by the seuprogram are determined and
recorded in a hierarchical structure called a tPe@arse-treepictorially shows how
the start symbol (or a grammar) derives a stringha language. Each node in the
parse-tree is labeled by a grammar symbol. An iotenode and its children
correspond to a production; the interior node apoads to the left side of the
production, the children to the right side.

Abstract syntax trees, or simply syntax trees, ediffrom parse trees because
superficial distinctions of form — unimportant fisanslation — do not appear in syntax
trees.

Formally, given a context-free grammar, a parse-ieea tree with the following
properties:

1) The root is labeled by the start symbol.
2) Each leaf is labeled by a token ordbftheemptystring).
3) Each interior node is labeled by a non-terminal.

4) If A is the non-terminal labeling some interior modnd X, X, ... X, are the
labels of the children of that node from left tght, then A— X; X5 ... X, is a
production. Here, X X, ... X, stand for a symbol that is either a terminal or a
non-terminal. As a special case, if-A ¢ then a node labeled A may have a single
child labeleck.

The leaves of a parse tree read from left to figith theyield of the tree, which is the
stringgeneratedr derivedfrom the non-terminal at the root of the parse.tre

Another definition of théanguagegenerated by a grammar is as the set of strirags th
can be generated by some parse tree. The procdissliofj a parse tree for a given
string of tokens is callegarsingthat string.

Often, a special kind of trees calledsgntax-treeis used, in which each node
represents an operation and the children of a medeesent the arguments of the
operation[2]. Thus, asyntax-treeis a compressed representation of the parseriree i
which the operators appear as the interior nodes tlee operands of an operator are
the children of the node for that operator.

For example, a syntax tree for the assignmentmtie (x :(=y * z) may be as

illustrated in ExFig 3-1:
X *
y/ \Z

ExFig 3-1: Syntax tree

A recursive descent parses a top-down parser built from a set of mutuadigursive
procedures (or a non-recursive equivalent) whereh esuch procedure usually
implements one of the production rules of the gramnThus the structure of the
resulting program closely mirrors that of the graanit recognize§l].

A predictive parseis a recursive descent parser with no backup.i&neel parsing is
possible only for the class a&fl(k) grammars which are the class of context-free
grammars for which there exists some positive irelg that allows a recursive
descent parser to decide which production to usexaynining only the next k tokens
of input. (The LL(k) grammars therefore excludeatibiguous grammars, as well as
all grammars that contain left recursion. Any caifieee grammar can be
transformed into an equivalent grammar that hakefi@gecursion, but removal of left
recursion does not always yield an LL(k) grammArgredictive parser runs in linear
time, and that's why it's preferred on an equivialeacktracking parser, whose
running time is cubic in the input size, althoudte tlatter can parse any input
grammar.

Recursive descent with backup is a technique thigrochines which production to use
by trying each production in turn. Recursive desagith backup is not limited to
LL(k) grammars, but is not guaranteed to terminaéess the grammar is LL(k).
Even when they terminate, parsers that use reeudascent with backup may require
exponential time.

A packrat parselis a modification of recursive descent with backio@t avoids non-
termination by remembering its choices, so as aanake exactly the same choice

twice. A packrat parser runs in linear time, butially requires more space than a
predictive parser.

Our project generates recursive descent predighiaesers; the parser generator
expects left-factored and left-recursion-free graanmhus we implemented two tools
for this purpose. More on both of them later irs thart.

To explain the concept of recursive descent parsexswill take a complete example
which will run on our tool to produce the parsedeavhich is going to be explained.
First of all, we are going to list the parser dggmn file which acts as the input to
our parser generator tool and we will explain iefly. The grammar contained in the
file describes variable declaration statements irC-tanguage-like format. For
simplicity we work with two data types onlyit andfioat.

Options
NameSpace = "MyLangCompiler" ClassName="Parser" Language = CSharp

Tokens
int float identifier comma

Grammar
Declaration = — DataType VarlList.
VarList — identifier Var.
Var — comma identifier Var | Eps.

DataType — int | float.

In the Options section we specify the name of the generated palass; in this case
it is Parser. The namespace in which the parser class will betamed is
MyLangCompiler in this example. Also, we specifisharp as the language in which
the generated parser is written in.

Next, we specify th@okens section, which is the interface between the geedra
parser and the scanner used by that parser. Irsé¢laison we specify the terminals
which will be used in our grammar productions. Ehaskens will be translated into
enumerated members where will take the value 3, "float" will take the valug
"identifier" will take the value 5 and "comma" wilike the value 6.

Last but not least, we specify our productions sule the Grammar section. A
grammar production is specified in this format:

A— B

where A denotes a non-terminal, and B is a seemhihals and non-terminals. Each
production is terminated by a dot. We use the parbsl "' to denote the ORing
operation. Also, we useps which is a reserved keyword to denefasilon %", the
empty string.

Before discussing the generated code we list tisé $ets and the follow sets of our
terminals and non-terminals:

first set of [DataType] is { int, float }
first set of [Declaration] is { int, float }

first set of [Var] is { Eps, comma }
first set of [VarlList] is { identifier }

follow set of [DataType] is { identifier }
follow set of [Declaration] is { EOF }
follow set of [Var] is { EOF }

follow set of [VarlList] is { EOF }

We could run our tool (ParserGenerator) as folldvesn the command prompt
passing "MyParser.cs" as the filename for the geadrcode.

C:\ParserGenerator MyParser.cs

Now, it is time to list the generated code, the Pdyser.cs" file:

namespace MyLangCompiler

{
public class Parser

{

public Parser(IScanner lexicalAnalyzer)

{

scanner = lexicalAnalyzer;

}

public void Declaration()

{
DataType();

VarlList();
}

public void VarList()

{
match(_TokenType._identifier);

Var();
}

public void Var()
{

if (currentToken.TokenType == _TokenType._comma)

match(_TokenType. _comma);
match(_TokenType._identifier);
Var();

}
}

public void DataType()
{ if (currentToken.TokenType == _TokenType._int)

match(_TokenType._int);
else if (currentToken.TokenType ==_TokenType._float)

match(_TokenType._float);

L SV I

else
SyntaxError(currentToken);

public void Parse()

{

currentToken = scanner.GetNextToken();

Declaration();

if (currentToken.TokenType != _TokenType. EOF)
SyntaxError(currentToken);

}

protected void match(_TokenType expected)

{

if (currentToken.TokenType == expected)
currentToken = scanner.GetNextToken();
else
ErrorHandler(expected, currentToken);

}

protected void ErrorHandler(_TokenType expected, Token found)

/I Write your own error handling here

}

protected void SyntaxError(Token errorAtToken)

/I Write your own error handling here

}

Token currentToken;
IScanner scanner;

}
public enum _TokenType
{ _EOF, Char, _String, _int, float, _identifi er, _comma
}
public interface IScanner

Token GetNextToken();

}
public class Token

public _TokenType TokenType;
}

Note that our tokens specified in the "Tokens" isacts mapped to the following
_TokenType enum:

public enum _TokenType

_EOF, _Char, _String, _int, _float, _identifi er, _comma

}

The used scanner must returnTakenType Vvalue that is equivalent to the token it
sees.

To understand the generated code we have to ckoifye concepts first, then we are
going to investigate each grammar production aedtseeffect on the generated code.
First of all, to use our generated parser we havygass an object from a class which
implements theScanner interface. This object is going to be the scamused by the
generated parser. To implement tBeanner interface, you have to implement the
following function,GetNextToken()

Token GetNextToken();

This function returns an object of typeken which contains th&okenType member
of type TokenType enum which tells the parser the type of the tokes currently
working with.

Recursive descent parsers use one lookahead telesrcall it currentToken — to
predict what path to production to produce startifigm the start symbol
(Declaration in this example). Every time the grammar tellghat a specific token
is expected we call theatch function:

protected void match(_TokenType expected)
{
if (currentToken.TokenType == expected)
currentToken = scanner.GetNextToken();
else

ErrorHandler(expected, currentToken);

}

Thematch function works as follows, if theurrentToken is the expected one, then
the next lookahead token is requested from thensraand we continue parsing. If
not, then an error is present so we call BmrHandler function passing the
expected and the found tokens for the user to kati# error as the application
requires.

In recursive descent parsers, every non-terminaksponds to a function which is
called every time this non-terminal is seen in aryduction. To grasp the idea, we
are going to take every production and see itsesponding fuction, as each
production yields a function in the produced code.

Declaration — DataType VarlList.
public void Declaration()
{
DataType();
VarList();
}

Since the righthand side of this production cossist only non-terminals, the
corresponding fuctions to these non-terminals alled.

VarlList — identifier Var.

public void VarList()

match(_TokenType._identifier);
Var();

}

Here the identifier is matched as it is a termiwadl the functiorvar() is called for
theVar terminal.

Var — comma identifier Var //Production1
| Eps. //Production2
public void Var()
{
if (currentToken.TokenType == _TokenType._comma)
{
match(_TokenType._comma);
match(_TokenType._identifier);
Var();
}
}

Becausé/ar is optional, as one of its right-hand-side,ishe lookahead is checked. If
it is a comma, then we work with thii&roductionlelse we return from thear()
function adhering t&roduction2

DataType — int | float.

public void DataType()

{ if (currentToken.TokenType == _TokenType._int)
{ match(_TokenType._int);
} else if (currentToken.TokenType =_TokenType._float)
i match(_TokenType._float);

else
SyntaxError(currentToken);

Because this production is really composed of tvamipctions ORed together, we use
the look ahead token to decide which one we araggtm follow. Note that if the
current token is not one of the types _TokenTypé.or _TokenType.float we call
the SyntaxError function because the Data Type ymtah is not an optional one.
The implementation of the SyntaxError is left te tiser.

Finally, we have to see how this process begins.Uder initiates the parsing process
by calling therarse() function:

public void Parse()

currentToken = scanner.GetNextToken();

Declaration();

if (currentToken.TokenType != _TokenType. EOF)
SyntaxError(currentToken);

}

which simply initialized the lookahead tokemnyrentToken . Then, it calls the first
production rule Declaration) which is the start symbol of our grammar. Finalty
makes sure that at the end of the parsing probestlé has reached an end and that
no tokens appear after accepting the processedtl inpu

3.3.1 Definition

An LL parser is a table-based top-down parser feulaset of context-free grammars.
It parses the input fromeft to right, and constructs laeftmost derivation of the
sentence (HenckL). The class of grammars parsable this way is knasihe LL
grammars. Older programming languages sometimedluggammars because it is
simple to create parsers for them by hand — usitigerethe table-based method
(described shortly), or a recursive-descent parsave've just seen.

An LL parser is called an LKJ parser if it use& tokens of lookahead when parsing a
sentence. If such a parser exists for a certaimmpar and it can parse sentences of
this grammar without backtracking then it is called LLK) grammar. Of these
grammars, LL(1) grammars, although fairly restvietiare very popular because the
corresponding LL parsers only need to look at tbet noken to make their parsing
decisions.

3.3.2 Architecture of an LL Parser

T S SR SIS S

Input: [([1]+]211])|$]|
SRR S S S S

Stack: |
e — P — +
bt |
| + |<------- + Parser +-----> Output
t—t | |
| F | B —— R — +
+--——+ | N
1)1 | |
ot S S S S— +
[$] | Parsing |
+---+ | table |
N +

Figure IlI-2: Architecture of a Table-Based Top-Down Parser
A table-based top-down
parser can be schematically presented as in figls82 The parser has amput
buffer, a stackon which it keeps symbols from the grammapaasing tablewhich

tells it what grammar rule to use given the symlmwisop of its stack, and itaput
tape To explain its working we will use the followirggnall grammar:

(1S -F
S -(S+F)
®F -1

The parsing table for this grammar looks as follows

(V1+$
S2-1-|-
Fl--[3]--

(Note that there is also a column for the spe@afinal $ that is used to indicate the
end of the input streamPepending on the top-most symbol on the stack taed
current symbol in the input stream, the parseriapghe rule stated in the matching
row and column of the parsing table (e.g., if ther@an S' on the top of the parser
stack and a '1' in the front-most position of thput stream, the parser executes rule
number 1, i.e., it replaces tli on its stack by™).

When the parser starts it always starts on itksiait
[S $]

where$ is a special terminal to indicate the bottom af #tack (and the end of the
input stream), and is the start symbol of the grammar. The parser atiempt to
rewrite the contents of this stack to what it seeshe input stream. However, it only
keeps on the stack what still needs to be rewrifi@n example, let's assume that the
inputis "(1 + 1)". When the parser reads th&t fi¢" it knows that it has to rewrite
to(S+F) and writes the number of this rule to the outpute Btack then
becomes:

[(, S + F), $]
In the next step it removes the (' from its inpineam and from its stack:
[S + F), $]

Now the parser sees a '1' on its input stream koowvs that it has to apply rule (1)
and then rule (3) from the grammar and write theimber to the output stream. This
results in the following stacks:

[F. + F), $]
[1. + F), $]

In the next two steps the parser reads the '1"drfdom the input stream and also
removes them from the stack, resulting in:

[F). $]

In the next three steps tte will be replaced on the stack with '1', the humB®aewill
be written to the output stream and then the 'd"anvill be removed from the stack

and the input stream. So the parser ends with Bothn its stack and on its input
stream. In this case it will report that it hasegated the input string and on the output
stream it has written the list of numbers [2, 1,33] which is indeed a leftmost
derivation of the input string. Therefore, the dation goes like this:

S -(S+F) -(F+F) S(1+F) S(1+1)).

As can be seen from the example the parser perfthras types of steps depending
on whether the top of the stack is a non-termma&grminal or the special symti

» If the top is a non-terminal then it looks up therging table (on the basis of this
non-terminal and the symbol on the input streamiclwviule of the grammar it
should use to replace the one on the stack. Théeuaf the rule is written to the
output stream. If the parsing table indicates thate is no such rule then it
reports an error and stops.

* |If the top is a terminal then it compares it to Hyenbol on the input stream. If
they are equal, they are both removed. Otherwisep#rser reports an error and
stops.

» If the top is$ and on the input stream there is alsb then the parser reports that
it has successfully parsed the input, otherwisegorts an error. In both cases the
parser will stop.

These steps are repeated until the parser stopshan it will have either completely
parsed the input and written a leftmost derivatmthe output stream, or it will have
reported an error.

3.3.3 Constructing an LL(1) Parsing Table

In order to fill the parsing table, we have to bith what grammar rule the parser
should choose if it sees a non-termiAabdn the top of its stack and a symbabn its
input stream. It is easy to see that such a rubelldhbe of the formrA — w and that
the language correspondingwoshould have at least one string starting vaith-or
this purpose we define tharst-Set of w, written here a&i(w), as the set of terminals
that can be found at the start of any stringvjmpluse if the empty string also belongs
to w. Given a grammar with the rulédg — wy, ..., Ay — w,, we can compute the
Fi(w;) andFi(A) for every rule as follows:

* Initialize everyFi(w;) andFi(A;) with the empty set
e Add Fi(w) to Fi(w;) for every ruleA; — w;, whereFi is defined as follows:
o Fi(aw')={a}for every terminak
o Fi(Aw"') =Fi(A) for every non-terminah with & not inFi(A)
o Fi(Aw') =Fi(A) |{e} U Fi(w'") for every non-terminah with ¢ in
Fi(A)
o Fi(e)={¢}
* Add Fi(w;) to Fi(Ai) for every ruleA; — w;
* Do steps 2 and 3 until dfi sets stay the same.

Unfortunately, the First-Sets are not sufficientctampute the parsing table. This is
because a right-hand-side of a rule might ultimately be rewritten to the dsnp
string. So the parser should also use theAule w if ¢ is in Fi(w) and it sees on the
input stream a symbol that could follodv Therefore we also need tRellow-Set of

A, written asFo(A) here, which is defined as the set of termixadsich that there is a
string of symbolsaAxS that can be derived from the start symbol. Conmguthe
Follow-Sets for the non-terminals in a grammar lcarone as follows:

* Initialize everyFo(A) with the empty set

» If there is a rule of the forA, — wAW', then
o if the terminalais inFi(w'), then add to Fo(A)
o if eisinFi(w"), then addro(A) to Fo(A)

* Repeat step 2 until dflo sets stay the same.

Now we can define exactly which rules will be conéal where in the parsing table.
If T[A, a] denotes the entry in the table for non-termihand terminah, then

* T[A, @] contains the rul& — w if one of the following is true.
o aisinFi(w)
0 ¢isinFi(w) andais inFo(A).

If the table contains at most one rule in every ohés cells, then the parser will
always know which rule it has to use and can tloeeefparse strings without
backtracking. Precisely is this case that the grammcalled ahL(1) grammar

In this chapter we present the syntax of the réoeirdescent parser generator input
file (grammar file) and then we present the sligifterences in the LL(1) parser
generator input file from the recursive descent one

It is important to note that the recursive desgarser accepts grammar in the EBNF
(Extended Backus-Naur Format) while the LL(1) pagEnerator accepts grammar in
the BNF (Backus-Naur Format).

The input file consists of labeled sections, in iMudlows; we present each section
with its syntax and meaning. The next two subsastintroduce the overall picture
and the detailed explanation of the input file.

3.4.1 Input File Syntax: The Overall Picture

Options
NameSpace namespac€lassName slassnaméd.anguage fanguage

Tokens
tokenltoken2......... tokenN

TopOfDeclaration
%%

anystring

%%

BottomOfDeclaration
%%

anystring

%%

TopOfDefinition
%%

anystring

%%

BottomOfDefinition
%%

anystring

%%

Grammar
NonTerminal— terminalsAndNonTerminals

ProductionN

Figure llI-3: ParSpring — The Syntax of the Input File

3.4.2 Input File Syntax: The Details

Options: Denotes the beginning of ti@ptionssections

namespaces a string representing the name of the namespaeee the generated

class will be enclosed in.

classnames a string representing the name of the generzdeskr class.

languageis an identifier that specifies the language incltihe generated parser will

be written in. The following values are currentiypported:
CSharp For generation in the C# language
JAVA For generation in the Java language
CPlusPlus For generation in the C++ language

Tokens: Denotes the beginning of the tokens section whscthé interface between
the generated parser and the scanner used byadtsarpln this section, specify the
terminals which will be used in the grammar prochng. These tokens will be
translated into enumerated memhaeginning at the value 3.

tokenl token2 ... tokenite a set of identifiers separated by spaces wkjotesents
the terminals used in the grammar productions.

TopOfDeclaration: Denotes the beginning of thieopOfDeclarationsection where
%% delimits the beginning and the end of a blockade which will be pasted as-is
in the generated file. Depending on the targetuagg, theTopOfDeclarationblock
of code will be pasted as follows:

C#: At the very beginning of the generated file; befaspening the
namespace.

Java: At the very beginning of the generated file; befopening the class.
C++: At the top of the .h declaration file.

BottomOfDeclaration: Denotes the beginning of ti&ottomOfDeclarationsection
where %% delimits the beginning and the end ofoakobf code which will be pasted
as-is in the generated file. Depending on the tardanguage, the
BottomOfDeclaratiorblock of code will be pasted as follows:

C#: At the end of the generated file; after closingrhenespace.
Java: At the end of the generated file; after closing¢leess.
C++: At the bottom of the .h declaration file.

TopOfDefinition: Denotes the beginning of tAe@pOfDefinitionsection where %%
delimits the beginning and the end of a block afecahich will be pasted as-is in the
generated file. Depending on the target langudgeT opOfDefinitionblock of code
will be pasted as follows:

C#: At the top of the generated file; after opening tlaenespace but before
opening the class.

Java: At the top of the generated class.
C++: At the top of the .cpp definition file.

BottomOfDefinition: Denotes the beginning of thBottomOfDefinition section
where %% delimits the beginning and the end ofoalobf code which will be pasted
as-is in the generated file. Depending on the tdegguage, th&ottomOfDefinition
block of code will be pasted as follows:

C#: At the bottom of the generated file; before clogimg class.
Java: At the end of the class before closing it.

C++: At the bottom of the .cpp definition file.

Grammar: Denotes the beginning of the grammar productionigse It consists of

an identifier representing a non-terminal at tife Hand side of the "->" mark where
its right-hand-side is the production itself cotiag of terminal and non-terminals.
Every production is terminated by a dot. The follogvlines are going to give the
syntax of writing productions, let S1 and S2 desoémy two terminals or non-
terminals or a mixture, then:

S1|S2 S1or S2

S1S2 S2 is concatenated after S1
{S1} S1 closure

[S1] S1 is optional

<. .> delimits a semantic action which is a pie€eale which is guaranteed to be
executed after evaluating S1 and before evalu&fhg

S1 <. semAction .> S2

Every non-terminal produces a void function in tfenerated code. By default this
function takes no parameters, to make it take petens; in the left hand side of the
production write the parameters enclosed betwegnf¢r example:

S1 (. TreeNode node, int level .) -
S2 S1 (. node.Left, level+1 .).

Note that when S1 is called in the right hand syde, have to pass the parameters it
is expecting as shown above.

3.4.3 Resolvers

Consider the following production:
S1->S2]|S3.

If the S2 and S3 first sets are intersecting; we i@nove this ambiguity by using
resolvers. We can write a Boolean expression which be checked and the
associated symbol will be evaluated if it evaluatesue. For example:

S1 -> IF (. BoolExpression .) S2 | S3.

So if there is an ambiguity S2 will be chosen ifolexpression evaluates to true,
otherwise S3 way will be chosen.

3.4.4 Comments

We can use the one line comments // and the nm@tdnes /* */ in the input file and
the comments will be ignored totally by the genarat

3.4.5 The LL(1) Input File Differences

The LL(1) input file is the same as the recursieeant one except that the LL(1)
input file doesn't support the following:

» Specifying parameters to non-terminals.
» Specifying resolvers.

Our parser generator todtarSpring besides generating the parser, it also detects
various types of errors and warnings whether syictamr semantic ones. Error
handling is one of the most important aspects friewving the practicality of any
parser. That's why we discuss this vital capabititthis separate chapter.

3.5.1 Semantic Errors and Warnings

The semantic error handler embedded in our to@atietvarious types of semantic
errors and warnings. The following describes edd¢hem in detail.

3.5.1.1 Warnings

Terminal defined but not used

This is just a warning that occurs when a termdedined in theT okenssection is not
used within th&Grammarsection.

For example, if the terminal
Addop
is defined in th& okenssection but not used the error handler displagsriessage

Warning: Terminal Addop defined but not used.

Unreachable production

A warning occurs when a production is not reachétdm the start symbol. This is
equivalent in programming to writing code afterreaurn , break Or continue
statement.

For example, if

S »aS|bB|Eps.
B —bh.

C —»cC|Eps.

It's clear that production C is not reachable fritra start symboS and the error
handler displays the message

Warning: Unreachable Production for C.

Contents of {...} or [...] must not be deletable

This is an LL(1) grammar warning that occurs whiea tontents of a closure or an
option are deletable.

For example, if there exists a rule such as
A —{la]}.
The error handler displays the message

Warning: LL(1) Contflict in A: Contents of {...} must not be deletable.

Several alternatives start with ...

This is another LL(1) warning that occurs when mibr@n one alternative overlap in
the first set.

For example if we have a rule

A —Dbfa][aB].
A —abjac.

The error handler displays the message

LL(1) Warning in A: Several alternatives start with a.

3.5.1.2 Errors

Non-terminal undefined

This is an error that occurs when a given non-teahnwas used in a rule but has no
definition, i.e. it doesn't occur on the left-haside of a production.

For example, if we have the rule

S -bB|aA]|Eps.
B -b.

The error handler displays the message

Error: Non-terminal A undefined.

Using a reserved keyword as a terminal or a non-teninal name

This is an error caused by using a reserved keyWadwithout being within double
guotes) as a name of a terminal or a non-terminal.

For example, if the keywor@lassNamas used within th& okenssection, the error
handler displays the message

Error: ClassName is a reserved keyword and can not be used as a token.
You can use "ClassName" instead.

However, as the message clarifies, we allow the teseise reserved keywords as
tokens after surrounding them with double quotes.

Non-terminal ... does not lead to a terminal

This is an error that occurs when given a non-teaX, there's no derivation of X
that leads to a terminal.

For example, if we have a rule
A->b Al a A
The error handler displays the message

Error: Non-terminal A does not lead to a terminal.

3.5.2 Syntactic Errors

The error handler also tool detects various tygesymtactic errors mentioned below.

Missing keyword Grammar

Occurs when the keywor@rammaris missing.

Unbalanced () or [] or {}

Occurs on detecting unbalances in any bracket (yp®:[] or {}.

Missing non-terminal in the left-hand-side

Missing production operator " —"

Missing "." to terminate a grammar rule

This chapter discusses the design and some imptatieen details for the parser
generator tool such as scanning, parsing and trée functions and algorithms.

The following figure illustrates the skeleton oétparser generator front end.

Scanning
Tokens
Parsing
Building the Detecting Syntax
Syntax Tree Errors

i

Computing First Sets

Checking Semantic Errors

I

Calculating Follow Sets

Figure llI-4: The Parser Generator Front-End

3.6.1 Scanning the Input File

In this phase, the input file is scanned by readimgracters and assembling them into
logical units {oken$ to be dealt with in the parsing process.

3.6.1.1 Reserved Keywords

"Tokens", "Options", "NameSpace", "ClassName", "Lan guage",
"TopOfDeclaration", "TopOfDefinition”, "BottomOfDec laration"”,

"BottomOfDefinition", "CPlusPlus", "CSharp", "Java" , "Grammar",
"Eps", "Sync", "IF".

3.6.1.2 Macro Representation of Other Tokens

Table llI-1: Macro Representation of Tokens

Token Representation

BulkOfCode %% (ANY]} %%

Identifier (_a-zA-2){]0-9a-zA-Z}.

String "{ANY}"

Character 'ANY"

Production ->

Or |

Dot

Equal =

OpenBracket (

CloseBracket)

OpenSquareBracket [

CloseSquareBracket]

OpenCurly {

CloseCurly }
Attributes (- {&ANY}))

SemAction <J{ANY} .>

EndOfFile EQF Char

Error Othefwise

3.6.1.3 Data Structure for Scanning

The following is the code of the data structuresduduring scanning. The comments
in the code are useful to understand the whole tiopa glance.

TokenType Enumerator

enum TokenType

{

Tokens, Options, NameSpace, ClassName, Language, DeclTop,
DeclIBottom, DefTop, DefBottom, CPlusPlus, CSharp, J ava, Grammar,
Weak, Eps, Any, Sync, If, BulkOfCode, Identifier, S tring, Character,
Production, Or, Dot, Equal, OpenBracket, CloseBrack et,
OpenSquareBracket, CloseSquareBracket, OpenCurly, C loseCurly,
Attributes, SemAction, Error, EndOfFile
}

Token Structure

struct Token

{
public
tstring Lexeme; /I String containing the lexeme
TokenType Type; /I Type of matched token
unsigned int LineNo; /I Line number (useful for error handling)
unsigned int ColNo; /I Column number (useful for error handling)

I3

States Enumerator

enum States // Holds the current state of scanner DFA

Start, Inldent, InString, InChar, InProduction,
InDot, InOpenBracket, InSemAction, Done, ErrorSt ate,
InBulkCode, AttributesState

I3

Scanner Class

class Scanner
{
public
Scanner(string fileName, unsigned int numberOfCharsPerRead = 1024);
Token GetToken(); /I Get next token from the input file
~Scanner();
unsigned char TabSize;

protected

TCHAR getNextCharachter(); /I TCHAR is the Unicode character
void ungetCharachter();

void initializeReservedKeywords();

TokenType reservedLookUp(tstring lexeme);

InputFile* file;
unsigned int currentLineNum,
bufferSize,
currentColNo,
maxCharsToRead, /I Number of characters to read per
/I journey to the ha rd disk
currentCharPosition; /I A pointer in the buffer

TCHAR?* buffer;
map<tstring, TokenType> reservedWords;

I3

3.6.2 Parsing the Input File

This section introduces a detailed explanationhaf RarserGenerator ~ and Node
classes and supported functionalities. The CFGsLigfi) and recursive descent
parsers are listed, along with nodes' functioredjtithe process of building the tree
and syntax error detection.

3.6.2.1 Recursive Descent Parser Generator CFG

Start — [OptionSet] TokenSet { TDec | TDef | BDec | BDef }
MyGrammar.
OptionSet — "Options" ["NameSpace" Equal String] ["ClassNam e"

Equal String] ["Language" Equal ID].
TokenSet — "Tokens" { ID | String }.
TDec — "TopOfDeclaration" { "ANY" }.

TDef — "TopOfDefinition" { "ANY" }.
BDec — "BottomOfDeclaration” { "ANY" }.
BDef — "BottomOfDefinition” { "ANY" }.

MyGrammar — "Grammar" { (ID | String [Attributes]) Product
Expression Dot }.

Expression (. int x, inty .) —

Term { Or Term } <. string s =""; .>.
Term — [Resolver] Factor { Factor }.
Factor — IF (..) Symbol [Attributes]

| OpenBracket Expression CloseBracket
| OpenOption Expression CloseOption

| OpenClosure Expression CloseClosure
| "SYNC" | SemAction.

Attributes — OpenAttr { "ANY" } CloseAttr.
SemAction — OpenAction { "ANY" } CloseAction .
Resolver — "IF" OpenBracket { "ANY" } CloseBracket.

ion

[Hint: Words without rules in the previous grammar repneslee tokens previously

discussed ("Options”, "Namespace" ...)].

3.6.2.2 LL(1) Parser Generator CFG

Start — [OptionSet] TokenSet { TDec | TDef | BDec | BDef
MyGrammar.

OptionSet — "Options" ["NameSpace" Equal String] ["ClassNam
Equal String] ["Language" Equal ID].

TokenSet — "Tokens" { ID | String }.

TDec — "TopOfDeclaration" { "ANY" }.
TDef — "TopOfDefinition" { "ANY" }.
BDec — "BottomOfDeclaration” { "ANY" }.
BDef — "BottomOfDefinition" { "ANY" }.

MyGrammar — "Grammar" { (ID | String) [Attributes] Product
Expression Dot }.

Expression(. int x, inty.) —
Term {Or Term } <. strings =""; .>.
Term — [Resolver] Factor { Factor }.
Factor — IF(..) Symbol [Attributes] | "SYNC" | SemAction.

Attributes — OpenAttr {"ANY"} CloseAttr.
SemAction — OpenAction {"ANY"} CloseAction.
Resolver — "IF" OpenBracket { "ANY" } CloseBracket.

ion

[Hint: The CFG for the LL(1) parser generator does nolude closure, option or
bracket (for BNF notation restrictions) rather thBBNF notation for recursive
descent parser generator specification].

According to the previous CFGs (i.e. separate paise each supported type) a
recursive-descent parser is built for analyzingitipait file, the parser generator class
has a member function for this purpose.

void ParserGenerator::Parse() /I Maps Start in the CFG

void ParserGenerator::OptionsSet() /I Maps OptionSet

void ParserGenerator::TokensSet() /l Maps TokenSet

void ParserGenerator::TopOfDeclaration() /l Maps TDec

void ParserGenerator::TopOfDefinition() /I Maps TDef

void ParserGenerator::BottomOfDeclaration() /l Maps BDec

void ParserGenerator::BottomOfDefinition() I/l Maps BDef

void ParserGenerator::Productions()

void ParserGenerator::Expression(GenericCFGNode** node, bool
reachable)

void ParserGenerator::Term(GenericCFGNode** node, bool reachable)

void ParserGenerator::Factor(GenericCFGNode** node, bool reachable)

void ParserGenerator::match(TokenType expected, string ErrorMsg="",
bool Resume=true)
void ParserGenerator::onError(tstring errorMsg)

The mentioned functions implement parsing the irfpes, building the syntax tree
and detecting syntax errors, the following is aadetl description of the three
processes.

The tree data structure is used to represent th® &Ha rule. The following section

describes how the optimized syntax tree is gengrated how syntax errors are
detected during parsing.

3.6.2.3 The Tree Data Structure

Firstly it's better to mention why to represent LS of a rule by a node rather than a
closure of terminals and non-terminals {N U T} (irales in the form

A — BCD...

only is accepted). This is to accept productions ifilexible form and to facilitate
dealing with the left factored form of a rule. Forample, a rule in the form

A ->BC(A[F]|YU(IO<.intx=7;inty =x*x + 3* x; .> [{PU}Y).

is accepted.

As mentioned in the previous example, the LHS caramOr, anAnd, anOption, a
Closure a Terminal a Non-terminal or a Semantic ActionSo the LHS must be a

generic node that can be an OredNode, an AndedNo@é&sureNode... so the data
structure is represented as follows:

NodeType Enumerator

enum NodeType // various types of nodes Ored,Anded,closure,....,etc

{
_Anded, _Ored, _Closure, _Brackets, Optional, _Ter minal,
_NonTerminal, _SyncNode, _SemAction

GenericCFGNode Class

class GenericCFGNode
{
public :
NodeType NType; /I Store the type of this node
virtual BitSet_Min FirstSet(ParserGenerator* P);
virtual bool FollowSet(ParserGenerator* P);
virtual BitSet_Min GetNonTerminals(ParserGenerator* P);
void virtual Print(ParserGenerator* P)=0; /I Print this node
tstring virtual check_LL1(ParserGenerator* P)=0;
virtual GenericCFGNode* Copy()=0;
/I Returns a copy of this node
void virtual Remove()=0;
/I remove all descendents the this node
virtual bool LeadToTerminal(ParserGenerator* P,
unsigned int LHS)=0;
¥

Functions that are in not bold will be discusséddrla

The GenericCFGNode class mentioned above is just the interface; #illusypes of
nodes inherit from it. The children are as follows:

OredNode Class
class OredNode : public GenericCFGNode
{
public
list<GenericCFGNode*> Children; /I A list of Ored children
OredNode();
3
AndedNode Class
class AndedNode : public OredNode
{
public
tstring ResolverString; Il Used if there is an LL(1) conflict
/I Contains the decision logic to
/I determine which produ ction to go
/Il through.
AndedNode();

g

ClosureNode Class

/I Semantically having zero or more occurrences of the child node
/I A ClosureNode can have only one child that can b e Ored, Anded, ...
class ClosureNode : public OredNode
{
public
ClosureNode();
%
OptionNode Class
/I Semantically having zero or more occurrences of the child node
class OptionNode : public OredNode
{
public
OptionNode();
%

SemActionNode Class

/I Actions to be executed

class SemActionNode : public GenericCFGNode

{

public
tstring SemAction; /I The string containing the action.
SemActionNode();

%

TerminalNode Class

class TerminalNode : public GenericCFGNode
{
public
int Namelndex; // Index of the terminal
tstring Attributes; /I Attributes for this node
RDParserGenerator::TokenType TerminalType;
bool IsWeak;

TerminalNode();

NonTerminalNode Class

/I Here the inherited Namelndex and attributes refe r to a non-
/I terminal one rather than terminal

class NonTerminalNode : public TerminalNode

{

public

NonTerminalNode();

I3

The last declarations are shortened by ignoring répeated code for overriding
functions (e.g. Copy(), Remove(), Print(), ...) in ethinterface (i.e. the
GenericCFGNode class).

3.6.2.4 Building an Optimized Syntax-Tree

The tree building process in tRarserGenerator ~ class deals with data members that
comprise a number of data structures described here

ParserGenerator Class Members

/I Terminals used in the specifications.
/I Terminals are loaded from values in the Tokens section.
map<tstring, TerminalEntry> Terminals;

/I Non-Terminals used in the specifications.
/I Non-Terminals are loaded during the parsing phase.
map<tstring,NonTerminalEntry> NonTerminals;

/I Index of the next terminal
/[[initialized using a TerminalBase]
unsigned int nextTerminallndex;

/I Index of the next non-terminal
/I [initialized using a NonTerminalBase]
unsigned int nextNonTerminallndex;

The goal of representing terminals as an indew isniy store the index in the node
rather than storing a string representing the meominal; as it's faster to compare
integers rather than strings. To avoid ambiguif@sa given node each type has a
range of indices. Terminals start fromerminalBase , non-terminals starts from
NonTerminalBase [in case of LL(1) parser generator a code indextstfrom
CodeBase]. These bases are defined in#aefine directive which can be easily
changed, there is no intersection among any ottlesges (i.e. terminals’' range, non-
terminals' range and codes' range).

Grammar Items Data Structures

TerminalEntry Class

class TerminalEntry

{

public
unsigned int Namelndex; // The index given to the terminal
BitSet_Min* FirstSet; /I The First Set of this Terminal
TokenType Type; /I The type of this token
vector<location> locations ; /I Locations at which this

/I terminal exist
bool used; //Is this terminal used so far or not?

TerminalEntry();
TerminalEntry(unsigned int NI, TokenType T, bool used = false);

TerminalEntry Class

class NonTerminalEntry

public
unsigned int Namelndex; // The index given to the non-terminal
BitSet_Min* FirstSet; /I The First Set of this non-terminal
BitSet_Min* FollowSet; /I The Follow Set of this terminal
bool Defined; /I This non-terminal has a rule?
bool reachable; /I Is this non-terminal reachable?
ProductionRule* Rule; /I The rule of this non-terminal
vector<location> locations; /I Locations at which this
/I non-terminal exis ts
NonTerminalEntry();
NonTerminalEntry(unsigned int NI, bool defined = false);

Grammar Data Structure

Simply, the grammar is a list of production ruleghepParserGenerator ~ class.

list<ProductionRule*> Grammer; /IParserGeneratormember
Firstly, we want to know how a rule is representaa] so this is the rule declaration

containing overall attributes required for the rulgke LHS, attributes,
SemAction,...,etc.

ProductionRule Class

class ProductionRule

{

public
ProductionRule(void);
~ProductionRule(void);
unsigned int LHS; //The index of the non-terminal in the LHS
tstring Attributes; /I Attributes for LHS
tstring SemAction; /I Semantic action "string of code"
GenericCFGNode* RHS; /I Root node for RHS
bool reachable; /I Is this rule reachable?
list<location> locations;

%

Tree Construction

During building the tree two types of operation atene, these operations are
optimization and gathering.

Tree Optimization

The tree is built in the minimum number of levetglanodes. For example, a tree for
the production

A — BCD.

is the same as the tree for the production
A — (B)(C D).

is the same as the tree for the production
A — ((B)C)D.

To illustrate the difference between an optimizezk tand non-optimized tree the
following is the representation of the tree of eadk in a non-optimized form:

ORed(ANDed(B, C, D)).
ORed(ANDed(ORed(ANDed(B)), ORed(ANDed(ORed(ANDed(C, D)))))).
ORed(ANDed(ORed(ANDed(ORed(ANDed(B)), C)), D).

But the optimized tree is the simplest of the tHozaall of them.

A — BCD .. ANDed(B, C, D).
A — (B)(CD) ... ANDed(B, C, D).
A — ((B)C)D ... ANDed(B, C, D).

Optimization is achieved in the implementation bhe talled process assigns the
children pointer. And that's wisxpression , Term andFactor functions each has a
pointer to the node pointer as a parameter.

void ParserGenerator::Expression(GenericCFGNode** node,

bool reachable)
void ParserGenerator::Term(GenericCFGNode** node, bool reachable)
void ParserGenerator::Factor(GenericCFGNode** node, bool reachable)

The reachable parameters are used to assigmedbieble property of the non-
terminal (if it exists) in the node's children.

Optimization While Traversing

The following listing illustrates how the optimizat is carried out while traversing
the tree. We adopted a convention of "mixing" C+# atructured English to clarify
the overall situation.

FUNCTION ParserGenerator::Expression
(
GenericCFGNode** node, /I A passed node, to be assigned
bool reachable

BEGIN
IF (Token in first Set of Term)
THEN
GenericCFGNode* ChildNode;
Term(&ChildNode, reachable);
[l'If this is the only child of the ORed node,

/I assign it to a referenced node.
IF (token.Type != Or)
THEN
*node = ChildNode;
return ;
END

*node = new OredNode();
((OredNode*)*node) -> Children.push_back(ChildNo de);
END

The remaining logic is here

END

FUNCTION ParserGenerator::Term

(GenericCFGNode** node, bool reachable)
BEGIN
*node=NULL;
IF (token.Type == Eps)
THEN

Eps logic is here

ELSE

bool ResolverExists = false ;
IF (token.Type == If)
THEN

Resolver logic is here

END
END

IF (Token is in the First Set of factor)
THEN
GenericCFGNode* child;
Factor(&child, reachable);
IF ('ResolverExists)
THEN
IF (Token is not in the First Set of factor)
/I If the only child of anded node,
/I assign it to a referenced node
THEN
*node = child; /I Assign referenced node
return ;
END
*node = new AndedNode();
END
if (child != NULL)
((AndedNode*)*node) -> Children.push_back(child);
END

Remaining logic is here

END

FUNCTION ParserGenerator::Factor
(GenericCFGNode** node, bool reachable)
BEGIN

Factor logic is here
END
This function assigns a node directly for termipalsn-terminals, semantic actions,

but continues the recursion process on the expressicase of closures, options or
parentheses and does not have a clear optimizatbe

Gathering

Rules are gathered using the non-terminal on tftehdad-side of the rule. For
example, the rules

A — B.
A — C.
A — D.

are gathered to a single rule with a right-han@-sidhving a prefix notation of
ORed(B, C, D) for the non-terminal A.

The gathering logic is described in the followirggihg.

IF (It's the first rule for the given non-terminal)
BEGIN
/I Add the grammar rule and assign it to the non -terminal
Expression(&Rule->RHS, reachable);
Rule -> locations.push_back(loc);
Grammer.push_back(Rule);
END
ELSE
GenericCFGNode* RuleNode;
Expression(&RuleNode, reachable);

Code for ORIing the current node with the curr ent rule of the
LHS non-terminal and assigning the result to the rule of this
non-terminal

END

Building the Tree

The tree is built using the&xpression , Term and Factor functions. Expression
makes aroredNode if there exists OR(s) between at least two termasn function
makes amndedNode if there exists two or more ANDed factoractor function has
no more than one child adding just one node inglosess.

Expression Function

void ParserGenerator::Expression

(GenericCFGNode** node, bool reachable)
BEGIN

IF (token is in the First Set of Term)

THEN

GenericCFGNode* ChildNode;

Term(&ChildNode, reachable);

IF (token.Type = Or) /'If a single child exists

THEN

*node = ChildNode;
return ;

END

*node = new OredNode();

((OredNode*)*node) -> Children.push_back(ChildNode);
END
while (token.Type == Or) /I If more than one child exist,
BEGIN /I add children to the Ored Node

match(Or);

GenericCFGNode* Child;

Term(&Child, reachable);

((OredNode*)*node) -> Children.push_back(Child);
END

END

Term Function

*node = NULL
IF (token.Type == Eps)

Eps logic code

ELSE

bool ResolverExists = false ;
IF (token.Type == If) /I'If there is a resolver
THEN /I It must be an ANDed node
match(If); /I Even if a single child exists
*node = new AndedNode();
IF (token.Type == Attributes)
BEGIN
((AndedNode*)*node) -> ResolverString = to ken.Lexeme;
match(Attributes,
"Error: Resolver attributes are missing,
the valid form is IF(. {ANY} .)",
false);
ResolverExists = true ;
END
IF (token is in the First Set of Factor)
THEN

GenericCFGNode* child;
Factor(&child, reachable);
IF ('ResolverExist)
THEN
IF (Token is not in the First Set of factor)
THEN /I If one child
*node = child;
return ;
END

*node = new AndedNode();

END
IF (child '= NULL)
((AndedNode*)*node) -> Children.push_back(child);
END

/I More than one child
WHILE (token in the First Set of Factor)

BEGIN
GenericCFGNode* child; /I Add a new child
Factor(&child,reachable); /I To given Anded node

/I This check is just for error handling purp oses
IF (child '= NULL)
((AndedNode*)*node) -> Children.push_back(child);
END
END

3.6.2.5 Syntax Error Detection

This is supported by theatch function that deals with many variables as nunaber
braces, brackets and square-brackets to detectamialancing, if exists.

void ParserGenerator::match(
TokenType expected, Il Type of expected token
tstring ErrorMsg, /I Error message to store if there exists a type
/I mismatch
bool Resume) // In case that an error exists,
/I is an advance to the next token needed?

Logic for balancing braces, brackets and square- brackets

/I'If the current token type is as expected adva nce to the
/I next token, where token is the current token
if (token.Type == expected)
{
token = lal; /l'lal is the first lookahead
lal = laz; /I 1a2 is the second lookahead
la2 = scanner -> GetToken();

else /I An error exists, perform the error action

{
onError(ErrorMsg); /I Store error message
HasErrors = TRUE // Mark grammar as has errors
if (Resume) /I If advancing on errors is allowed
{
token = lal; /I Advance to the next token
lal =la2;
la2 = scanner -> GetToken();
}
}

}

As described in the previous code, when iiiech() function detects an error it
marks the error usingnError() function that stores the error in an internal data
structure with the associated location (i.e. rownbar, column number...).

void ParserGenerator::onError(tstring errorMsg)

{
/I Store the error
FileErrors[token.LineNo][token.ColNo].push_back(errorMsg);
NumberOfErrors++; /I Increment the errors counter

/I If the number of errors exceeds a certain thr eshold
if (NumberOfErrors >= 1000)

{

cout<<"Error: Too many errors!"<<endl;
exit(1); /I Exit unsuccessfully

}
}

In the previous code, th®leErrors (@ ParserGenerator ~ data member) is defined
as

map<int, map<int, list<tstring> > > FileErrors;

where the first integer is the line number, theoseécis the column number, and
list<string> is used to store the errors with their correspogdine number and
column number.

On the call of thematch function, only the expected token, "message ibrérand
"advance on errors" parameters are passed. Fompéxam

match(Equal, "Error: Equal Sign Missing", false);

is used to match thequaltoken, store passed message if mismatch exigddspainto
advance on mismatch.

3.7.1 Code Generation Internals - RD Parser Generator

The code generation part in the parser generattre(ethe LL(1) or Recursive-
Descent) is designed and implemented in a waypgbahits extensibility. It is very
easy to extend the parser to generate in a newadaaegby only implementing a well-
defined interface calledcodeGenerator ~ which abstracts the core of the parser
generator from code generation.

The ICodeGenerator interface for the recursive-descent parser generatdefined
as follows:

class ICodeGenerator

{

public

void virtual GenerateCode(ParserGenerator* parser) = 0;

void virtual OrGenerator(OredNode* node) = 0;
void virtual ClosureGenerator(ClosureNode* node) = 0;
void virtual OptionalGenerator(OptionNode* node) = 0O;
void virtual AndGenerator(AndedNode* node) = 0;

void virtual SemActionGenerator(SemActionNode* node) = 0;
void virtual TerminalGenerator(TerminalNode* node) = 0;
void virtual NonTerminalGenerator(NonTerminalNode* node) = 0;

protected
ofstream DefinitionFile;
ParserGenerator* Parser;

I3

In the current version, three classes implement ItweleGenerat or interface:
CPlusPlusGenerator , CSharpGenerator and JavaGenerator . These classes
generate code in C++, C# and Java respectively.

We will discuss théCodeGenerator protected members first:

» DefinitionFile: Every code generator must write to at least ome Tihis member
represents the output file stream through whichgdweerated parser is written to
the disk. TheDefinitionFile member for example creates the .cs file in the
CSharpGenerator ~ class. Also, in thedavaGenerator class, it creates the .java
file. For languages that needs more than onedilgetgenerated, the derived class
representing the code generator for this languagst rdefine these files. For
example, thecPlusPlusGenerator ~ generates two files (.cpp and .h files). Here,
the definition file (.cpp file) is written througthe DefinitionFile member
inherited from the parent abstract classieGenerator ~ while the declaration file

(.h file) is written to disk through the&PlusPlusGenerator class member
DeclarationFile

» Parser: This is a pointer to a parser object for which ced® be generated. This
pointer is used by the generator class to accessytitax tree from which code is
generated.

The public members of theodeGenerator are as follows:

* OrGenerator(OredNode* node): takes amoredNode pointer and writes its
contents to the stream used in code generation.

* ClosureGenerator(ClosureNode* node): takes aClosureNode pointer and
writes its contents to the stream used in codergéna.

* OptionalGenerator(OptionalNode* node): takes aroptionalNode pointer
and writes its contents to the stream used in gederation.

* AndGenerator(AndedNode* node): takes amndedNode pointer and writes
its contents to the stream used in code generation.

* SemActionGenerator(SemActionNode* node): takes aSemActionNode
pointer and writes its contents to the stream usedde generation.

* TerminalGenerator(TerminalNode* node): takes arerminalNode pointer
and writes its contents to the stream used in gederation.

* NonTerminalGenerator(NonTerminalNode* node): takes a
NonTerminalNode pointer and writes its contents to the stream usedode
generation.

* GenerateCode(ParserGenerator* parser): this is the most important
function which is called firstly to begin code gestéon. This function takes a

pointer to a parser. By passing a pointer to agpatke code generation class will
have access to all the sections found in the granmmpeit file besides the most
important membeiGrammer which is a list of the production rules each ¢ifiet
consists of an object of a derived class freenericCFGNode . Objects of classes
inherited from the GenericCFGNode class contain a fuction called
GenerateCode() which overrides the virtual functioGenerateCode() of the
GenericCFGNode base class. This virtual function is to be calléom
ICodeGenerator.GenerateCode() function. Depending on the type of the node,
a specific function is called which calls the shiéfunction iniCodeGenerator

For example, ifiCodeGenerator iS NOW processing &enericCFGNode oObject
which is aNonTerminalNode object, then on callingode.GenerateCode(this)
(where this is the pointer of the callingiCodeGenerator) then the
NonTerminalNode.GenerateCode() function will be called due to the rules of
virtual functions. Finally, theNonTerminalNode.GenerateCode() function will
call 1ICodeGenerator.NonTerminalGenerator() passing theNonTeminalNode
object to be used in generating the code correspgrid thisNonTerminalNode

This is a very elegant usage which illustratesoseuty of virtual functions.

In what follows, we show the class diagram of tloelec generation part of the
recursive descent parser generator targeting tigeigges C++, C# and Java:

| ICodeGenerator

#DefinitionFile
+Parser

+GenerateCode(in parser)
+OrGenerator(in node)

D +ClosureGenerator(in node) 47

+OptionalGenerator(in node)

+AndGenerator(in node)

+SemActionGenerator(in node)

+TerminalGenerator(in node)
+NonTerminalGenerator(in node)

CPlusPlusGenerator CSharpGenerator JavaGenerator

#DeclarationFile
#decFileName

+CPlusPlusGenerator(in decFileName, in defFileName)

+CSharpGenerator(in fileName) +JavaGenerator(in fileName)

Figure llI-5: RD Parser Generator
Code Generation Class Diagram

3.7.2 Code Generation Internals — LL(1) Parser Generator

The code generation of the LL(1) parser generatgimpler than the code generation
of the recursive-descent parser generator. Thdsesto the fact that in the LL(1) code
generation we use the LL(1) table (whose detailsewdemonstrated in the LL(1)
parser section) which is contained in the parsgeabbSo, instead of traversing the
simple trees as in recursive-descent code generat® only translate the LL(1) table

into a data structure in the output code of the egmied parser with the
implementation of the LL(1) parsing algorithm irettarget language (C++, C#, Java).

ThelCodeGenerator interface for the LL(1) parser generator is defias follows:

class ICodeGenerator

L
public
void virtual GenerateCode(ParserGenerator* parser) = 0;

protected
ofstream DefinitionFile;
ParserGenerator* Parser;

I3

We will discuss théCodeGenerator ~ protected members first:

» DefinitionFile: Every code generator must write to at least ome Tihis member
represents the output file stream through whichgdweerated parser is written to
the disk. TheDefinitionFile member for example creates the .cs file in the
CSharpGenerator ~ class. Also, in thedavaGenerator class, it creates the .java
file. For languages that needs more than onedilgetgenerated, the derived class
representing the code generator for this languagst rdefine these files. For
example, thecPlusPlusGenerator ~ generates two files (.cpp and .h files). Here,
the definition file (.cpp file) is written througthe DefinitionFile member
inherited from the parent abstract classieGenerator ~ while the declaration file

(.h file) is written to disk through the&PlusPlusGenerator class member
DeclarationFile

» Parser: This is a pointer to a parser object for which cmd® be generated. This
pointer is used by the generator class to accessytitax tree from which code is
generated.

The public members of theodeGenerator are as follows:

* GenerateCode(ParserGenerator* parser): This function is called to
generate the LL(1) table as a data structure utiegLL(1) parsing algorithm
(referred to as the LL(1) driver).

The ICodeGenerator is the interface that should be implemented byebigpers
extending our parser generator tool to generate.cGdrrently, three languages are
supported for code generation: C++, C# and Javecifipto our implementation for
the generators of these three languages; the slass@isPlusGenerator

CSharpGenerator and JavaGenerator inherit also from a class called
ISpecificGenerator as these three classes share three functionsatbaused
internally in code generation. Here is the declanadf thelSpecificGenerator and

a description for its three members:

class ISpecificGenerator
{
public
void generateUserFunctions();
void initializeParser(); /Nnitialize the LL(1) table and the delegates

I3

void generatelLL1Controller();

generateUserFunctions: Every block of code embedded in the grammar is
generated as a fuction by thenerateUserFunctions() where each generated
fuction is called in its correct time while parsing

initializeParser: This function initializes the LL(1) table to that the parser
and initializes pointers (for C++) or delegatesr (fo#) to the generated user
functions to be called while parsing (to run theerusode embedded in the
grammar). In the Java generated parsers, we giumigue number to each
function and when it is time for functiox to be called(Xx is an integer
representing the id of the functiorg switch statement is made on this number to
call the corresponding function.

generateLL1Controller: This function generates the implementation of the
LL(1) parsing algorithm in the target language.

This is the class diagram of the code generatioh gfathe LL(1) parser generator
targeting the Ianguag@arSpﬁng supports in its current version; C++, C# and Java:

ICodeGenerator

#DefinitionFile
D +Parser q

+GenerateCode(in parser)|

T

CPlusPlusGenerator CSharpGenerator JavaGenerator
#DeclarationFile
#decfileName +CSharpGenerator(in fileName) +JavaGenerator(in fileName)
+CPlusPlusGenerator(in decFileName, in defFileName), #writeCallFunctionNumber()
AV
ISpecificGenerator

+generateUserFunctions(),
+initializeParser()
+generateLL1Controller()

Figure llI-6: LL(1) Parser Generator
Code Generation Class Diagram

Sometimes developers write grammars that contaifi)Lconflicts and it's such a
tedious mission to convert them manually into grarsywithout conflicts by using
algorithms like left recursion removal and lefttfaiing that it's worth automating the
process. In this chapter we discuss both toolslirdétail.

Syntax Analyzer Helper Tools

Left Recursion Left Factoring Tool
Remaoval Toc

Figure IlI-7: Syntax Analyzer Helper Tools

3.8.1 Left Recursion Removal

Left recursion removal is an algorithm commonly dis® make operators left
associative and to eliminate LL(1) conflicts emeggidue to left recursive rules.
Taking the simple expression CFG

exp — exp addop term | term
as a simple example of left recursion removal rthe is split into two rules:

exp - term expl
expl - addop term expl | Eps.

It's noteworthy that these tools are more importantin the case of LL(1) parsers
than in their recursive-descent counterparts; thisis because the recursive-
descent parser generator accepts its input gramman the EBNF notation that
solves repetition and choice problems, however thelL(1) parser generator
accepts its input grammar in the BNF notation.

3.8.1.1 The Input

The input of this tool is considered to be a valiql) parser specification file, if the
file contains errors the tool will inform the dewpkr that the file contains errors and
will exit.

3.8.1.2 The Output

The output is a new specification file containirige tleft-recursion-free grammar,
which may be the same as the input grammar if fierdeursion originally existed.
The figure above illustrates the skeleton of tlierkzursion removal tool.

Left Recursion Removal Tool

Scanning
1

Tokens

Vi

Parsing

Building the Syntax Tree

U

Removing Left Recursion

U

Generating Output File

Figure 11I-8: Left Recursion Removal Tools

Some phases (such as the scanning and the palgisg)pllustrated above have been
already explained, so we will skip these two phased we will focus on the

"Removing Left Recursion” and 'Generating Output File" phases.

3.8.1.3 The Process

This process performs left recursion removal ondingent grammar (represented as
nodes in memory) and generates a new grammaredit@nating left recursion from
the old one. The logic of the operations to beqranéd is illustrated in the following
pseudo code.

RemoveleftRecursion(Non-Terminal LHS) returns

BEGIN
/I Temp_NonTerminals store new generated non-termin als
Map<tstring, NonTerminalEntry> Temp_NonTerminals

FOREACHNonTerminal NT in NonTerminals)

BEGIN
FOREACHNonTerminal NTi in NonTerminals from the
beginning to NT) /I Not including NT
BEGIN

NT.Rule.RHS = NT.Rule.RHS.ReplacelfPosible(NTi)
END_FOREACH

NT.Rule = ILRemoval(NT.Rule, &Temp_nonTerminals);
/I ILRemoval function makes an immediate left recur sion

/I Removal adding rules to the new gram mar
END_FOREACH

FOREACHNonTerminal NT1 in Temp_nonTerminals)
BEGIN

Add NT1 to NonTerminals Map
END_FOREACH

RETURN_eadToTerminal
END

As exposed in the previous logic, the node has ddfisnctionality — the
ReplacelfPossible() function; which is implemented for all node typbssides the
ILRemoval() function.

ReplacelfPossible() Function

1) OredNode

The returned node in the case of an OredNode ig) ©b Node between children
ReplacelfPossible() call, if thechild call returned an OredNode just children are
added not the OredNode.

OredNode::ReplacelfPossible(non-terminal NTi) retur ns node
BEGIN
OredNode ReturnedNode = New OredNode

FOREACKChild Ch in Children)
BEGIN
Node N = Ch.ReplacelfPossible(NTi)
IF (N.Type = OredNode)
THEN
Add each child in N to ReturnedNode children
ELSE
Add Node N to ReturnedNode Children
END_IF
END_FOREACH

RETURNReturnedNode;
END

2) Anded Node

Replacement is done if left recursion exists, eadktence of a node referring Xai
is replaced with mapped Rule Right Hand Side nodkethen formatting them in BNF
notation, as illustrated in the logic below.

AndedNode::ReplacelfPossible(non-terminal NTi) retu rns node
BEGIN
AndedNode ReturnedNode = New AndedNode
SELECTChild Ch in Children;
Ch is the Left Recursive and Equal NTi)
BEGIN
Replace Ch Node with the definition of its Rule.
Formatting it and store it into ReturnedNode
END_SELECT

RETURNReturnedNode
END

The following is an example to illustrate this ftinoality:

Production : A —-BaAl|cAl
Current Rule : B -Bb|Ab|d
Replacement : B -Bb|(BaAl|cAl)b|d
Formatting B -Bb|BaAlb|CAlb|d

3) Terminal Node & SemAction
No replacement of these nodes is done; they justra copy of themselves.

ReplacelfPossible(non-terminal NTi) returns node
BEGIN

RETURNTthis .Clone()
END

4) NonTerminal Node

A non-terminal node returns a copy of itself excepen it refers to the passed non-
terminal; in which case the RHS of the passed eomihal rule is returned.

NonTerminalNode::ReplacelfPossible(non-terminal NTi) returns node
BEGIN
IF (this refersto NTIi)
THEN
NTi.Rule.RHS.Clone()
ELSE
RETURNTthis.Clone()
END_IF
END

ILRemoval() Function

This procedure makdsnmediateleft (IL) recursion for a non-terminal if necessary.

ILRemoval(Rule r, Map* Temp-NonTerminals) returns r ule
BEGIN
Split r.RHS into two types
(one left-recursive and one non-left-recursive)

OredNode N1 = r.RHS.LeftRecursiveNode
(without recursive non-terminal)
OredNode N2 = r.RHS.Non-LeftRecursive Node

Let NT be a new non-terminal
Let R1 new rule with r1.LHS
Let R2 new rule with NT as LHS

IF (N2.ChildrenCount = 0) /INo possible immediate left recursion
THEN
Add r.Clone() To New_Grammar
RETURN.RHS
ELSE
Add NT to Temp-NonTerminals
R1.RHS = N1.Children && NT
R2.RHS = N2.Children && (NT | Eps)
Add R1, R2 to New_Grammar
END
END

3.8.1.4 Generating the Output File

This function generates the new file containing gpecification of the grammar after
eliminating left recursion.

OutputFile()
BEGIN
Output Options, Terminals, TopOfDeclaration, TopOf Definition,
ButtomOfDeclaration, BottomOfDefinition sections as-is
into the new file
Output The Word "Grammar"

Rule R = Start Symbol Rule
R.RHS.Output() /INode function that prints to the file

FOREACKHRule R in New_Grammar)
BEGIN
IF (R.LHS does not refer to start symbol)
THEN
Output R.LHS
Output "->"
R.RHS.Output()
Output "."
Output "\n"
END
END
END

As mentioned in the logic above, a function is iempénted in each node to output its
contents to the file.

1) Ored Node

OredNode::Output()
BEGIN
FOREACKChild Ch in Children)
BEGIN
Ch.Output()
IF (Ch is not the last child)
THEN
Output " |"
END_IF
END_FOREACH

RETURNFS;
END

2) Anded Node

AndedNode::Output()
BEGIN
IF (Resolver)
THEN

Output Resolver
END_IF

FOREACKChild Ch in Children)
BEGIN
Ch.Output()

IF (Ch is not the last child)
THEN
Output " "
END
END_FOREACH

RETURNFS;
END

3) Terminal Node

TerminalNode::Output()
BEGIN

Output TerminalNode.Name
END

4) NonTerminal Node

NonTerminalNode::Output()
BEGIN
Output NonTerminalNode.Name

IF (Attributes)
THEN
Output Attributes between (. .)
END_IF
END

5) SemAction Node

SemActionNode::FirstSet() returns BitSet
BEGIN

Output semantic action string between <. .> terminal Name
END

3.8.2 Left Factoring Tool

Left Factoring Tool

Scanning
1

Tokens

1V

Parsing

Building the Syntax Tree

U

Left Factoring

U

Generating Output File

Figure IlI-9: Left Factoring Tool

Left factoring is an algorithm required when two miore grammar rule choices
(productions) share a common prefix string. Fomepia;

Before Left-Factoring : A -~BC|BD
After Left-Factoring : A -~ BA1l
Al -C|D

3.8.2.1 The Input

The input of this tool is considered to be a valiq1l) parser specification file. If the
file contains errors the tool will inform the dewpkr that the file contains errors and
will exit.

3.8.2.2 The Output

The output is a new specification file containirng tleft-factored grammar, which
may be the same as the input grammar if no commefixps exist.

Some phases (such as the scanning and the palsisg)pllustrated above have been
already explained, so we will skip these two phames we will focus on theLéft

Factoring" and 'Generating Output File" phases.

3.8.2.3 The Process

This process performs left factoring on the curignaimmar (represented as nodes in
memory) and generates a new grammar after leforiact the old one. The logic of
the operations to be performed is illustrated @ftillowing pseudo code.

Left Factoring ()
BEGIN
BOOL Changed = TRUE
WHILE (Changed)
BEGIN
Changed = FALSE

FOREACHNonTerminal A in NonTerminals)
BEGIN
Let F be a prefix of maximal length shared by
two or more production choices for A

IF (F = Eps)
THEN
LetA SF.|F 2|F 3..]F n-
be all production choices for A
Suppose F 4, F ,, ..., F « Share F so that
A —~FB 4FB ,...IFB kIF kel |F o

The B ;'s share no common prefix, and the
F ol |F » do not share F.
Replace rule A -F.|F 2|F 3]...|F n-
by adding two new rules in New_Grammar
Map:
A SFA|F 1]..|F n.
A ; -B;|B ,]...|B k-

END_IF
END_FOREACH
END
END

As exhibited in the above logic, the algorithm jestracts common factors in the
given production choices and perform the factorraprocess for each non-terminal
rule if possible. For example, consider the grammar

A—abdcAlabdcBD|abcdCD| abcdAB.

B—>bB | Eps.
C—>cC | Eps.
D—>dD | Eps.

Considering symbols in bold as non-terminals angtioald symbols as terminals (i.e.
defined in theTokenssection), if this grammar is applied as an inputhie algorithm,
in the first loopa b d cis detected as the prefix with maximal length etan the first

rule, while other rules has no common prefixes, #redchanges the happen to the
first rule are:

A —abdcA;jlabcdCD]| abcdAB.

In the second loop, the prefix with maximal lend#tected is b c dfor the first rule
while other rules have no common prefixes, andulechanges to:

A —abdcA;l abcdA,

In the last loopa bis detected as the prefix with maximal length,tdmecomes:

A —ab As
As; > dcA;l cdA,.

The left-factored grammar after all changes takecefs listed below.

A —ab As
A3_)dCA1|CdA2.
A, > CD| AB.

U Part III 7

Conclusion and Future Work

1. LEXcellent

1.1 Summary

We can summarize the features and the capabititfesed byLE Xcellent as follows:

e The developer interacts withEXcellent via providing the specification of his
tokens in a text file, together with the actiondb&performed by the scanner when
a given token is encountered.

* The format of the input file provides the developath the capability to declare
macros, so as to simplify his regular definitiolisallows him to define specific
pieces of code to be inserted in the generated fdeden the positions needed.

* The format of theCEXcellent input file is closely similar to the format of theEx
input file. Such a similarity makes it easier fdretdevelopers to learn the
LEXcellent format sinceLEX is a well known tool by most compiler developers.

* L[EXcellent converts the regular definitions stated in theutnfile into an NFA
through a very efficient process. The Thompson ttaoson of LEXcellent is
characterized by a special memory management sysitamnwas developed
specifically for that purpose.

* The NFA is converted into a DFA through the welblium Subset Construction
algorithm. However, we have made a contributiontite Subset Construction
algorithm making it more efficient than the genesite published in most of the
classic compiler texts. After such modificationsvénébeen made, the resulting
DFA is almost ideally optimized to the extent tbaty a small effort is needed in
the forthcoming optimization phase.

* The DFA is then minimized to optimize its memorgesi

* The optimized DFA then undergoes a compressionggsoto further optimize the
memory size.LFEXcellent gives the developer two compression techniques to
choose from (besides one of them — Bars compression technique — has two
variations, which makes them effectively three)sides the choice not to
compress at all. Another choice, and possibly thestnuseful one, is to let
LEXcellent choose the best compression technique for youedbam the
compression ratio criterion.

* LEXcellent can generate the lexical analyzer using any oftkinee languages
supported in its current version: C++, C# and J&uh languages where chosen
from among all available languages since they & imost widely used.
LEXcellent, however, can be easily extended to support memgulages with a
little maintenance cost.

* The lexical analyzer generated B¥ Xcellent supports the Unicod@4] encoding
system, thus, it supports an uncountable numbdaingiuages, including Arabic.
This feature is missing in many other similar tools

1.2 Future Work

As a future work LEXcellent is expected to undergo the following enhancements:

Supporting more output languages. Besides C++, i@l Java we can support
other languages easily.

Supporting other input file formats so as not tstniet the compiler developer to
the LEX input file format.

Providing more compression techniques besides #ies Rnd the Redundancy
Removal techniques currently available.

Adding more error and warning messages as repbstébe prospective users of
LEXcellent.

2. ParSpring

2.1 Summary

We can summarize the features and the capabititiesed by®arSpring as follows:

ParSpring takes as an input a text file describing the paisde generated. The
main section in the input file is tt@rammarsection which contains the CFG of
the desired parser. The grammar mainly consisterafinals and non-terminals.
The terminals are declared firstly in tA®kenssection. The generated parser
expects from the used scanner to pass it a numireesponding to a token
declared in thd@okenssection of the input specification file.

The input grammar must be left-factored and leftirsion free.
ParSpring provides warnings and errors reporting problentséninput file, if any.
We provide tools to left factor CFGs and removeére€ursion from them.

The user is able to embed code within the grammadyztions. These lines of
code are guaranteed to be executed in the right specified by its position
within the production.

The user is able to use predetermined sectionsritywgvcode in them which is
guaranteed to be generated in the output parsee &l according to the
description of these sections TopOfDeclaration TopOfDefinition

BottomOfDeclarationBottomOfDefinition in the input file specification section.

ParSpring generates parsers of two types: recursive-desecehtL(1) parsers.

The generated parser could be generated in anybti@ee famous languages
supported in version 1.0: C++, C# and Java.

2.2 Future Work

Generally speaking, the way of making parser geaeranore powerful is to make
them capable of accepting less-restricted grammasiraell as generating parsers in
many languages (Python, Delphi, ...) as well as tédint types(LALR, LR(2), ...).

So, in the future, it's expected th@trSpring will be enhanced to support:

Generating LALR(1) parsers.

Generating LR(1) parsers.

Generating LR(n) parsers, which is the Nirvananyf parser generator.
Generating parsers in more languages (like DelpthiRython).
Enhancing error handling in the generated parser.

3. The General Conclusion

A compiler writer's mission becomes a nightmareeontanual implementation is

decided. Developers get bored repeating the sateusework writing scanners and

parsers; essentially "reinventing the wheel" evene a new product is to be coded.
The manual process is extremely time consuminghagiay error-prone. Nowadays,

manual compilers are only written in compiler urgtaduate courses as a kind of
training, but as long as "real" applications argarded, tools must be used to
facilitate the process.

Using CCW, LEXcellent and ParSpring provides the developer with numerous
advantages, including the ability of generatingspes using more than one technique,
using different programming languages, and parsngless languages via the
Unicode[34] support feature. The graphical user interface igea/ simulates actual
IDEs intended for developing complete applicatioBy. integrating the previous
advantages, our tool has virtually overcome all dificulties encountered in the
compiler writing process and the drawbacks foundh available tools, given its
extensible architecture.

References

Books

[1] KENNETH C. LOUDEN [1998]. “Compiler Construction: Principles and Practice,” Galgotia
Publication, Delhi, India.

[2] AHO, A. V. and J. D. ULLMAN [2001]. “Compilers: Principles, Techniques and Tools,”
Pearson Education, Delhi, India.

[3] ALLEN I. HOLUB [2002]. “Compiler Design in C,” Prentice Hall, Delhi, India.

[4] DANIEL I. A. COHEN [1997]. “Introduction to Computer Theory,” John Wiley & Sons
Incorporation, Canada.

[5] BJARNE STROUSTRUP [1997]. "The C++ Programming Language," Addison-Wesley
Publishing Company, One Jacob Way, Reading, Massachusetts, USA.

[6] KERNIGHAN, B. W. and D. M. RITCHIE [1988]. "The C Programming Language," Prentice
Hall, Upper Saddle River, New Jersey, USA.

[7] FRANCIS S. HILL [1990]. "Computer Graphics Using Open GL", Prentice Hall, Upper
Saddle River, New Jersey, USA.

URLs

[8] ftp://ftp.th-darmstadt.de/pub/programming/languages/C++/tools/flex++bison++/

[9] http://parsetec.com/Irgen

[10] http://www.gnu.org/software/bison/

[11] http://www.gnu.org/software/flex/

[12] http://spirit.sourceforge.net/

[13] http://www.cs.berkeley.edu/~smcpeak/elkhound/

[14] http://www-rocg.inria.fr/oscar/www/syntax/syntax-eng.htm

[15] http://www.hwaci.com/sw/lemon/

[16] http://www.cs.vu.nl/~ceriel/LLgen.html

[17] http://www.devincook.com/goldparser/

[18] http://www.parsifalsoft.com/

[19] http://home.earthlink.net/~slkpag/

[20] http://www.is.titech.ac.jp/~sassa/lab/rie-e.html

[21] http://world.std.com/~compres/

[22] http://www.programmar.com/main.shtml

[23] http://www.gradsoft.com.ua/eng/Products/YaYacc/yayacc.html

[24] http://www.sand-stone.com/

[25] http://www.speculate.de/styx/

[26] http://www.nongnu.org/grammatica/

[27] http://www.afm.sbu.ac.uk/precc/

[28] http://www.thinkage.ca/english/products/product-yay.shtml

[29] http://www.math.tu-dresden.de/wir/depot4/

[30] http://www.ssw.uni-linz.ac.at/Research/Projects/Compiler.html

[31] http://sourceforge.net/projects/dotnetfireball

[32] http://www.gca.org/papers/xmleurope2001/papers/html/s07-3.html

[33] http://directory.google.com/Top/Computers/Programming/Compilers/Lexer _and Pars
er_Generators/

[34] http://www.unicode.org/

[35] http://www.codeproject.com/vcpp/stl/upgradingstlappstounicode.asp

[36] http://www.flipcode.com/articles/article advstrings01.shtml

[37] http://[forums.microsoft.com/MSDN/ShowForum.aspx?ForumID=96&SitelD=1

[38] http://www.dotnetmagic.com/

[39] http://en.wikipedia.org/wiki/Compiler

[40] http://www.codeproject.com/vcpp/stl/upgradingstlappstounicode.asp
[41] http://www.unicode.org/reports/tr9/

[42] http://forums.microsoft.com/MSDN/ShowPost.aspx?PostiD=212294&SitelD=1
[43] http://www.flipcode.com/articles/article _advstrings01.shtml

[44] http://ximol.sourceforge.net/

[45] http://lwww.unicode.org/fag/utf _bom.html

[46] http://blog.ianbicking.org/do-i-hate-unicode-or-do-i-hate-ascii.html
[47] http://Iwww.codeproject.com/file/TextFilelO.asp

[48] http://www.rrsd.com/boost/libs/serialization/doc/codecvt.html

[49] http://en.wikipedia.org/wiki/Grace Hopper

[50] http://en.wikipedia.org/wiki/Noam Chomsky

[51] http://en.wikipedia.org/wiki/Chomsky hierarchy

@

S

Appendices

A. User's Manual

This user manual is mainly dedicated to the praspgeasers of CCW (Compiler
Construction Workbench) in its first version. Wst lihe functionalities of the menus,
together with their hierarchical arrangement. Thiea tool bar is depicted in an
independent figure. The dockable windows are tatsd.

We depend heavily on the user viewing the accompgnytorials, and that's why
the manual here is relatively simple. We believa tlan image is worth a thousand
words.

Recent Projects

Exit Al+F4

4 k%

Project Tools Help.
k) r Project...
a oot | o)
H X File: 4 Lexical Analyser Specification File Elank File *
E Save 3 Parser Specification File v |0 Wizard-assisted File. e
% Save As » Graphicsl Regular Languags Specification Fils a6
T || saveal Fio] | Other File
] PageSetup... Ctri+Shift+p
3, Prink Previen
4 it ctrp
Recent Filss

| Mew blaik lexical analyzer specification file, € used for coding

|[Tuesday, June 13, zoos

‘ Output Task List

4 bx

Tools Help
v - .
7 e i Wi N W S
a | open Project..,
& 7
m save File 5 Lexical Analyzer Specification File »
Jy
'% Save s 3 Parser Specification File 3 .
@ || saveal F10 Graphical Regular Language Specification File Eir
0} PageSetup.. Ctrl+shft+p Other File... Java...
3, Prink Previen
4 Print kP
Recent Files
Recent Projects
Exit Al+F4

|Open an existing C+-+ parser speciication fils For editing.

|| Tuesday, June 13, 2006

‘ Cutput Task List

[File] Menu Details

File
Common file operations
— New
Common operations for dealing with new items
— Project
Create a new project
— File
Create a new file
— Lexical Analyzer Specification File
New lexical analyzer specification file
— Blank File
New blank lexical analyzer specification file
—> C#
New blank C# lexical analyzer specification file
— C++
New blank C# lexical analyzer specification file
—>Java
New blank C# lexical analyzer specification file
— Wizard-Assisted File
Use the RegEXx builder to create a set of regular expressions
— Parser Specification File
New parser specification file
— Blank File
—> C#
New blank C# lexical analyzer specification file
—» C++
New blank C++ lexical analyzer specification file
— Java
New blank Java lexical analyzer specification file
— Wizard-Assisted File
Use the CFG builder to create a CFG
— Graphical Regular Language Specification File
New graphical regular language specification file
— Other File
New file of any type
— Open
Common operations for dealing with existing items
— Project
Open an existing project
— File
Open an existing file
Lexical Analyzer Specification File
Open an existing lexical analyzer specification file for editing

—>C#

Open an existing C# lexical analyzer specification file for editing
— C++

Open an existing C++ lexical analyzer specification file for editing
—* Java

Open an existing Java lexical analyzer specification file for editing
— Parser Specification File

Open an existing parser specification file for editing
—» C#

Open an existing C# parser specification file for editing
—> C++

Open an existing C++ parser specification file for editing
— Java

Open an existing Java parser specification file for editing
— Graphical Regular Language Specification File

Open an existing graphical regular language specification file for editing
— Other File

Open an existing file of any type for editing

— Save

Common operations for saving modified documents
— Project

Save changes in the current project
— File

Save changes in the current file

— Save As

Save changes in the current project as a new project without altering the current one
— Project

Creates a new project as a copy of the current project
— File

Creates a new file as a copy of the current file
— Save All

Save changes in all open files
— Page Setup

Adjustments before printing
— Print Preview

Preview for WYSIWYG printing
— Print

Print the current document
— Recent Files

A list of the most recently used files
— Recent Projects

A list of the most recently used projects
— EXxit

Exit the application

Compiler Construction Workbench 1.0

File | Edit | Windows Project Tools Help
o D\&—‘} Undo Chr+Z ﬂ\g‘f{ﬂ‘»@@‘
5}
= Redo Chri+y
o 4 b X
m Cut Chrbx
X
% =4 Copy Chrl+C
i 2| paste ctrl+y
‘ Delete Del
Select Al Ctrl+a
Find and Replace... Chrl+F
Ctrl+a
Close F4
| Belete the current selection || Saturday, June 17, 2006
Qutput Tatsk List

Lexical Analyser Specification Files

| Project

Parser Specification Files

Task List

Graphical Regular Language Specification Files

Cubput

Lexical Analyser Cods Files

Show All windows

Parser Code Files

Hide All Windows

Help

Seu

F&
Shift+Fg

ReyB|

d bX

Miscellaneous Files

Addtional Folders

Wiew the files in the carrent project

| saturday, June 17, 2006

[Edit] Menu Details

Edit

Common operations for editing in the current file

— Undo

Undo the last operation
— Redo

Redo the last operation
— Cut

Cut the current selection into the clipboard
— Copy

Copy the current selection into the clipboard
— Paste

Paste the current contents of the clipboard into the current file, at the position of the caret
— Delete

Delete the current selection
— Select All

Select all the contents of the current file
— Find and Replace

Find and replace strings in the current file
—> Go To

Go to a certain line in the current file
— Close

Close the current file

[Windows] Menu Details

Windows
Common windows

— Project Explorer

View the files in the current project
— Output

View the tasks in the current build
— Task List

View the output of the current build

— Show All Windows
Show all dockable windows

— Hide All Windows
Hide all dockable windows

Compiler Construction Workbench 1.0

Ble Edt windows Project | Tools | Help

RD Parser Generator

LL(1) Parser Generator

4 b X

T LEXcellent

R e : \
T I ParSpring 3 ‘

a3

o Left Recursion Removal

% Left Factoring

< Synkax Options...

|| Saturday, June 17, 2006

Tessk List

Compiler Construction Workbench 1.0

File Edt Windows Project Tools | Help

4 b X

6‘\3 D@UHl«i‘AQ&\%@;” Contents... [
T About LEXcellent...

2

Q‘ About ParSpring. .

sl

= About COW 1

g

Acknowledgements. ..

|| saturday, June 17, 2006

Task List

[Tools] Menu Details

Tools
Helper tools

— LEXcellent
Generate a lexical analyzer
— ParSpring
Generate a parser
— LL(1) Parser Generator
Generate an LL(1) Parser
— RD Parser Generator
Generate an RD Parser
— Left Recursion Removal
Remove the left recursion - if exists - from a context-free grammar
— Left Factoring
Left-factor a context-free grammar
— Syntax Options
Options for customizing text appearances in files

[Help] Menu Details

Help

Help and support information

— Contents
Help contents
— About LEXcellent
Technical support for LEXcellent
— About ParSpring
Technical support for ParSpring
— About CCW 1.0
Technical support for CCW 1.0
— Acknowledgements
Acknowledgements

Compiler Construction Workbench 1.0

File Edt Windows

DWHE[S

Project | Tools Help
Add New Ttem

»

| 55 ot & |

I Add Existing Item

3

Lexical Analyzer Specification File

dsio|dxg joaloig

Include In Project

Show All Files
| Refresh

| Properties..,

Exclude From Project

Parser Specification File

Graphical Regular Language Specification File, ..
Other File...

C#

Java.

|| Saturday, June 17, 2006

Tessk List

Compiler Construction Workbench 1.0

Ble Edt Windows

Dbl

Project | Tools Help

‘ Add Hew Ttem

| Falder

Add Existing Item

>

File ¥ Lexical Anakyser Specification File

Blarik Fils 3 \

dzlo|dxg yoslond

Include In Project
Exclude From Project
Show All Files

] Refresh

7 Properties...

Parser Specification File

| Other File

Graphical Regular Language Specification File

c#

Wizard-Assisted File

CHt

Java

|Add a niew [exical analyser specification file bo vour project; C++ used for coding

|| saturday, 1ume 17, 2005 |

Taek List

[Project] Menu Details

Project

— Add New Item
Add a new item to the project
— Folder

— File

Add a new

Add a new folder to your project

Add a new file to your project
— Lexical Analyzer Specification File

lexical analyser specification file to your project

— Blank File
Add a new blank lexical analyser specification file to your project

—> C#
Add a new lexical analyser specification file to your project,
C# used for coding

— C++
Add a new lexical analyser specification file to your project,

C++ used for coding

to

Add a new

— Java
Add a new lexical analyser specification file to your project,

Java used for coding

— Wizard-Assisted File
Use the RegEx builder to add a set of regular expressions

your project

— Parser Specification File

parser specification file to your project

— Blank File
Add a new blank parser specification file to your project

—> C#
Add a new parser specification file to your project,
C# used for coding

— C++
Add a new parser specification file to your project,

C++ used for coding

Add a new

Add a new
— Add EXxisting Item

— Java
Add a new parser specification file to your project,

Java used for coding

— Wizard-Assisted File
Use the CFG builder to add a context-free grammar to your project
— Graphical Regular Language Specification File

graphical regular language specification file to your project

— Other File

file of any type you want to associate with your project

Add an existing item to your project

— Lexical Analyzer Specification File
Add an existing lexical analyzer specification file to your project

— C#
Add an existing lexical analyzer specification file to your project,
C# used for coding

—» C++
Add an existing lexical analyzer specification file to your project,
C++ used for coding

— Java
Add an existing lexical analyzer specification file to your project,

Java used for coding

— Parser Specification File

Add an existing parser specification file to your project
|, C#

Add an existing parser specification file to your project, C# used for coding
—» C++

Add an existing parser specification file to your project, C++ used for coding
— Java

Add an existing parser specification file to your project, Java used for coding
— Graphical Regular Language Specification File

Add an existing graphical regular language specification file to your project
— Other File

Add an existing file of any type to your project
— Include In Project

Include the selected item in the project
— Exclude From Project

Exclude the selected item from the project
— Show All Files

Show all the available files in the selected folder.

Some of these files may NOT be related to the project
— Refresh

Reload the file list
— Properties

View the properties of the current project

Main ToolBar Details

Compiler Construction Workbench 1.0
| Fle Edt Windows Project Took Help

HdldonlDaloan|s

L1l & &
AMAMAMLAAMMANMMA

MR

1 5 9

}JeJO\dxa }oalond

2 6 E
3 7 B

| || saburday, June 17, 2006

| Output‘ Task LlsTi

Table A-1: Main ToolBar Details

Number | Button Name Description
1 New Button Common operations for dealing with new items
2 Open Button Common operations for dealing with existing

items

Save Button Save changes in the current file

T el

4 Save As Button Save changes in the current file as a new file
without altering the current one
Print Button & | Print the current document
6 Print Preview _l Preview for WYSIWYG printing
Button
7 Page Setup Button m Adjustments before printing
8 Undo Button ';3_1' Undo the last operation
9 Redo Button ﬁ&:‘} Redo the last undone operation
A Cut Button < | Cut the current selection into the clipboard
B Copy Button |j:| Copy the current selection into the clipboard
C Paste Button ___| Paste the current contents of the clipboard into
the current file, at the position of the caret
D Find Button “3 | Find strings in the current file
E Find Next Button "\% Find the next currently searched string
Replace Button ﬁ Replace strings in the current file

Docking Windows

Compiler Construction Workbench 1.0

: Project Explorer R x FHle Edt Windows Froject Tools Help
Lexical Analyser Specification Files O el | B SE R AR
Parser Specification Filss 4 x
Graphical Regular Language Specification Files
Lexical Analyser Code Files
Parser Code Files
Miscellaneous Files
Additional Folders
[| Saturday, June 17, 2006
£ Gutput iz
i Task List x
| B obros H_l. 0 arnings H i) 0Messages
Category Default Order Diescription File Hame Line Mumber
M

Project Explorer Window

Shows the files in the current project directonther those registered in the project or
all files. Double-clicking a file name opens it faditing. Clicking a tab
collapses/uncollapses it. This window is dockahbk, you can show it, hide it or
make it invisible, via the appropriate commandsh@Windows menu or using the
two small buttons on the right side of the title.ba

Task List Window

Shows the tasks in the current build if there wem®rs. Double-clicking an error
opens its file for editing, and highlights the linember that contains the error. You
can select what types of output are shown (ermasnings or messages) by toggling
the appropriate push button. This window is doakahle. you can show it, hide it or
make it invisible, via the appropriate commandsh@Windows menu or using the
two small buttons on the right side of the title.ba

Output Window

Shows a summary of the output of the current bdiliis window is dockable, i.e.
you can show it, hide it or make it invisible, \iae appropriate commands in the
Windows menu or using the two small buttons on the rigie sf the title bar.

B. Tools and Technologies

Visual C++ 6.0, Enterprise Edition
Standard Template Library (STL)
Component Object Model (COM)
Visual Studio .NET 2003

Visual Studio .NET 2005
DotNetMagic Library (Ver 3.0.2)
Fireball Text Editor

Microsoft Office Visio 2003

C. Glossary

Deterministic Finite Automaton: A state transition function implementation. It
consists of:

1. Afinite set of states, often denoted by Q.
2. Afinite set of input symbols, often denotediy

3. A transition function that takes as arguments tesaad an input symbol and
returns a state. The transition function will conmydbe denoted.

4. A start state g one of the states in Q.

5. A set, of final or accepting states F. The set & ®ibset of Q. There can be
zero or more states in F.

Compiler: A program that reads a program written in one laggu— the source
language — and translates it into an equivalengrara in another language — the
target language.

Front End of a Compiler: Consists of those phases, or parts of phaseshwlejgend
primarily on the source language and are largaliependent of the target machine.
These normally include lexical and syntactic analythe creation of the symbol
table, semantic analysis, and the generation efrim¢diate code.

Lexical Analysis: The stream of characters making up the source @mogg read in a
linear fashion (in one direction, according to llweguage) and grouped into tokens —
sequences of characters having a collective meaning

Parser Generator: A program that produce syntax analyzers, nornfediyn an input
that is based on a context-free grammar.

Scanner Generator: A program that automatically generates lexical lyaeas,
normally from a specification based on regular egpions. The basic organization of
the resulting lexical analyzer is in effect a fengutomaton.

Syntax-Directed Translation Engine: A program that produce collections of
routines that walk the parse tree, generatingnmteliiate code. The basic idea is that
one or more "translations” are associated with eexte of the parse tree, and each
translation is defined in terms of translationgsnheighbor nodes in the tree.

Automatic Code Generator: A program that takes a collection of rules thdinde
the translation of each operation of the intermedianguage into the machine
language for the target machine.

Lexical Token: A sequence of characters that can be treatedias e the grammar
of the source language

Regular Language: A language is regular if and only if it can be sped by a
regular expression.

Unicode: is an industry standard designed to allow text symdbols from all of the
writing systems in the world to be consistently resgnted and manipulated by
computers. Unicode characters can be encoded aayngf several schemes termed
Unicode Transformation Formats (UTF).

Thompson’s Construction Algorithm: This phase in the lexical analyzer
construction process is responsible for converting set of regular expressions
specified in the input file into a set of equivdl&ondeterministic Finite Automata
(NFAS).

Nondeterministic Finite Automaton: An NFA consisefs

1. Afinite set of states, often denotéd

A finite set of input symbols, often denotgd

A start state g one of the states @.

F, a subset dD, is the set of final (or accepting) states.

The transition functiord is a function that takes a state @hand an input
symbol inX or the empty worce as arguments and returns a subse@ of
Notice that the only difference between an NFA andFA is in the type of
value that returns: a set of states in the case of an NFAaasidgle state in
the case of a DFA.

a bk~ wb

Subset Construction Algorithm: This phase in the lexical analyzer construction
process is responsible for converting the nondetestic finite automata (NFAS)
resulting from the Thompson's construction algonitihto their corresponding DFA's.

Context-Free Grammar: (Grammar, for short), also known B&NF (Backus-Naur
Form) notation, is a notation for specifying the synt#xa language. A grammar
naturally describes the hierarchical structure o&nyn programming language
constructs. It mainly consists of four components:

1. A set of tokens, known dsrminal symbols.
2. A set ofnon-terminals

3. A set ofproductionswhere each production consists of a non-termoaled the
left side of the production, an arrow, and a seqeeaf tokens and/or non-
terminals, called the right side of the production.

4. A designation of one of the non-terminals as thet stymbol.

Parse Tree: A structure that shows pictorially how the stamnbol (or a grammar)
derives a string in the language. Each node imp#hise-tree is labeled by a grammar
symbol. An interior node and its children corregphém a production; the interior node
corresponds to the left side of the production ci&dren to the right side.

Formally, given a context-free grammar, a parse-ieea tree with the following
properties:

1. The root is labeled by the start symbol.
2. Each leaf is labeled by a token ordbftheemptystring).
3. Each interior node is labeled by a non-terminal.

4. If A is the non-terminal labeling some interior modnd X, X, ... X, are the
labels of the children of that node from left tght, then A— X; X5 ... X, is a
production. Here, X X, ... X, stand for a symbol that is either a terminal or a
non-terminal. As a special case, ifA ¢ then a node labeled A may have a single
child labeleckt.

Syntax Tree: A compressed representation of the parse tree iohwhe operators
appear as the interior nodes, and the operande operator are the children of the
node for that operator.

Recursive-Descent ParserA top-down parser built from a set of mutually-resiue
procedures (or a non-recursive equivalent) whereh esuch procedure usually
implements one of the production rules of the gramnThus the structure of the
resulting program closely mirrors that of the graanit recognizes.

Predictive Parser: A recursive-descent parser with no backup.
Packrat Parser: A modification of recursive descent with backuptth&oids non-

termination by remembering its choices, so as aanake exactly the same choice
twice.

