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ABSTRACT

Feature detection and image matching are two important tasks
in photogrammetry. Their application continues to grow in a
various fields, from simple photogrammetry tasks such as fea-
ture recognition, to the development of sophisticated models
to deal with bandwidth problems in mobile devices. Due to
low bit-rate requirement of the current mobile communica-
tion, Mobile Visual Search became a very challenging prob-
lem. In this direction, this paper presents important conclu-
sions based on a comprehensive evaluation of SIFT match-
ing performance against various parameters (e.g. JPEG qual-
ity/compression in model and test images, image resolution,
etc). The main conclusion of the performed experiments is
that reducing jpeg quality from 100% to 30% slightly impart
the matching performance, while it significantly reduces the
communication bandwidth requirement by ≈ 70%.

Index Terms— SIFT, JPEG, Image Matching, Mobile Vi-
sual Search, Low Bitrate

1. INTRODUCTION

Lowe [1] presented SIFT for extracting distinctive invariant
features from images, which is invariant to image scale and
rotation. Since then, it has been widely used in many im-
age retrieval systems and Mobile Visual search applications
[2, 3, 4]. Furthermore, many papers have been studying en-
coding techniques of the images to have a lower bit rate [5,
6, 7] . An important aspect, not comprehensively studied in
these systems, is the effects of JPEG quality that significantly
affects the image size, and how that reflects the matching per-
formance for distant, close, and average distant objects. An-
other important question is How the performance changes un-
der different image resolutions.

One of the important points, addressed in this study, is
the contrast between transmitting features to transmitting im-
ages. Although compressing and reducing features size has
been under intensive research recently [8, 6], these methods
are not proven to be applied to more complicated context. For
instance, Vijay’s CHOG approach [5, 6], does not handle spa-
tial constraints (compressed version of HOG [9]) . So as an

aspect of this study, we report the bandwidth benefits of trans-
mitting lower quality image compared to features. The rest of
this paper is organized as follows. Section 2 presents the
datasets utilized in the evaluation and the parameter settings.
Section 3 presents the common setup for all experiments.
Section 4 presents the experiments and discussion . Section
5 presents the conclusion.

2. PARAMETER SETTINGS AND DATASETS

This experimental study on the SIFT recognition is based on
various parameter settings that include

1. With/ Without Upsampling of factor 2 (Width, Height)
2. Different Model JPEG qualities [5%, 10%, 20%, 30%,

40%, 50%, 60%, 70%, 80%, 90%, 100%].
3. Different Test JPEG qualities [5%, 10%, 20%, 30%,

40%, 50%, 60%, 70%, 80%, 90%, 100%].
4. Different Test image resolutions (640, 480, and 320).
5. With Noise / Without Noise (Noise means merging

model images with a database of 10000 random im-
ages, which is about 1.5 GB on Disk).

6. Different Datasets (Covers1, Covers2), detailed in the
following subsections.

In order to study these parameters, two datasets were cre-
ated (Covers1, Covers2). We created these datasets to analyze
aspects like the effect of images taken from different distances
and angles, which is a typical situation that many of the cur-
rent systems necessitates.

2.1. Covers1 Dataset

Covers1 is a dataset of forty four book covers. For each book
the cover image is retrieved from the web as the model images
and printed. Nine images were captured for each model with
complex background as shown in Figure 1. The 9 images
were picked according to the specifications of distance and
angles shown in Table 1. Figure 1 shows sample images for
Covers1 dataset.

2.2. Covers2 Dataset

Covers2 is a dataset of the same forty four book covers as the
model images. Fifteen images were captured for model with



Distance Angles
Close 0,10,30, 45

(object is about 35% of the image)
Average Distant 0,10,30

(object is about 20% of the image)
Far 0,10

(object is about 10% of the image)

Table 1: Covers1 dataset specifications

Fig. 1: Covers1 dataset Images. From left to right Model
Image (2516 features) , Test image ( Close-0 deg, 337/7562
features matched), Test Image (Moderate -30 deg, 151/7847
features matched) , Test Image ( Far-10 deg, 82/5051 features
matched). For the test images, the detected features are col-
ored in yellow while the matched features are colored in blue
and the matched object is surrounded by a red polygon

simpler background (i.e. much less artificial features). Then,
fifteen images were picked according to the specifications of
distance and angles shown in Table 2. This dataset is more
challenging in terms of distances and angles however it has
simpler background as shown in Figures 1, 2. Figure 2
shows sample images for Covers2 dataset..

Distance Angles
Close 0,10,30, 45,60

(object is about 35% of the image)
Average Distant 0,10,30, 45,60

(object is about 10% of the image)
Far 0,10,30, 45,60

(object is about 1-2% of the image)

Table 2: Covers2 dataset specifications

Fig. 2: Covers2 dataset Images. From left to right, Model
Image (2516 features) , Test image ( Close-60 deg, 9/416 fea-
tures matched), Test Image (Moderate -45 deg, 32/262 fea-
tures matched) , Test Image ( Far- 60 deg, 0/1848 features
matched).

3. COMMON EXPERIMENTAL SETUP

The setup, shared in all our experiments, is defined as follows

1. Image resolution for the basic 44 model Image Images:
Max dimension (640). The images were scaled such
that the aspect ration is preserved.

2. SIFT Feature Quality: 0.85.
3. SIFT Feature Size: 128.
4. Affine Matching is used to recognize images [1] (ex-

actly in section 7.4 in this paper)
5. 121 datasets were generated on for each quality ratio of

Model and Test image (11 JPEG quality rations [5%,
10%, 20%, 30%, 40%,50%, 60%, 70%, 80%, 90% and
100% ] applied for both Model and testing images giv-
ing 121 combinations).

6. In case that MergeF (i.e. a flag) = True, the number of
models in database = 44. Other wise, the total umber of
Models = 10044 because 10,000 random image models
were added in the experiment..

4. EXPERIMENTS AND DISCUSSION

We performed seven big experiments, each of them includes
121 sub-experiments (11×11 for each JPEG quality combina-
tion). The specifications of each experiment are illustrated in
Table 3. For each of these experiments Recall, Precision, and
Accuracy were computed. Due to the high volume of the re-
sults, we present here the most important parts. The complete
set of results are presented in the supplementary materials.
Hence, Figure 3 presents the recall of all the 7 experiments.

Dataset UpSample MergeF Res
Experiment 1 Covers1 No False 480
Experiment 2 Covers1 Yes False 480
Experiment 3 Covers1 No True 320
Experiment 4 Covers1 No True 480
Experiment 5 Covers1 No True 640
Experiment 6 Covers2 No True 480
Experiment 7 Covers2 No True 640

Table 3: Specifications of the Experiments. Res refers to
the maximum dimension of the test image resolution. Test
images were scaled with aspect ratio preserved.

Table 4 presents the database size of the SIFT features
stored in KD tree data structure. The table indicates higher
database size for low JPEG quality databases (due to many
artifacts of low quality), then it decreases for moderate jpeg
quality. Eventually, the DB size increases again. The follow-
ing subsections discuss different aspects of these results.

4.1. Upsampling Effect

In Experiment 1 (Upsampling = False), the average recall and
precision (over all the 121 cases) are 82.34% and 99.57%
respectively, while in Experiment 2 (Upsampling = True),



MergeF = False MergeF = True
Covers1 dataset Cover2 dataset

JPEG quality 480 480 with Upsample 320 480 640 480 640
5 324393 1797212 1443228930 1443291870 1443229018 1443229062 1443229150

10 299189 1686080 1441545354 1441560506 1441545442 1441545530 1441545574
20 289374 1734801 1441172238 1441148078 1441172326 1441172414 1441172458
30 291315 1676574 1441033738 1441038730 1441033826 1441033914 1441033958
40 292930 1623093 1440999422 1441017742 1440999510 1440999598 1440999642
50 292929 1582059 1440981378 1441012266 1440981466 1440981554 1440981598
60 294015 1545387 1440995182 1441005018 1440995270 1440995358 1440995402
70 294602 1509997 1440963498 1440969014 1440963586 1440963674 1440963718
80 295260 1484038 1440977262 1440975806 1440977306 1440977438 1440977482
90 295397 1474941 1440976990 1440958530 1440977078 1440977166 1440977210

100 295397 1481337 1440988426 1440981854 1440988426 1440988558 1440988558

Table 4: Trained DataBase Sizes in bytes (KD trees of features) for each of the seven experiments against each of the JPEG
quality ratios

Fig. 3: Experiments’ Recall: Each sub-figure visualizes the recall of each of the 121 (11 (model JPEG quality values) × 11
(test JPEG quality values) sub experiments on a 3D surface

the average recall and precision are 93.25% and 99.21% re-
spectively. From Experiment 1 and 2, the conclusion is that
upsampling improves recognition accuracy with about 10%
on average with a penalty of high computational time (about
three times on average, breaking real time constraints, as de-
tailed in the supplementary materials).

4.2. JPEG Quality Effect

Figure 3 illustrates logarithmic increase behavior in the recog-
nition performance in all of the experiments (1-7), while the
JPEG quality ratios change in both dimensions (i.e. model
image and test image quality).In other words, There is almost
no relative change after certain percentage of JPEG quality
(≈ 30%). The bottom-line of these results is discussed here
from different perspectives (Image Size effect, Merge Effect,
and Test-image Max Dimension Resolution Effect).

4.2.1. Effect on Image Size

Figure 4 shows how the JPEG quality affects the image size
on five different cases, which are Covers1 dataset (1-640, 2-
480, 3-320 pixels) and Cover2 dataset (4-640, 5-480 pixels).
This reflects the bandwidth benefits of using the 30% JPEG

quality. Quantitatively speaking, 70% of the bandwidth is re-
duced in Covers-640 (i.e from 129.5 KB for 90% JPEG qual-
ity to 37.9 KB for 30% JPEG quality). This is without los-
ing control on the descriptor size that could be computed on
the server using either low bit rate descriptors (i.e. [6]) or
standard 128-SIFT descriptors, according to the needs of the
system.

Fig. 4: Sizes on disk of test Images in kilobytes (i.e. for 396
images for Covers1 dataset, 660 images for Covers2 dataset)

4.2.2. MergeF Flag Effect

Comparing Results of Experiments 1 and 2 (i.e. The exper-
iments with MergeF = False) to Experiments 3, 4, 5, 6



and 7 (The experiments with MergeF = True), we can find
that the performance metrics (i.e. Recall, Precision) for Ex-
periments 1 and 2 settles (almost no relative change) starting
20%-20% (Model-Test JPEG quality ratios). While in Experi-
ments 3-7 performance settles starting 30%-30% (Model-Test
JPEG quality ratios).

4.2.3. Test Image Resolution Effect

This subsection discusses the effect of changing the max di-
mension of the test images’ resolution, shown in Experiments
3-7 (with MergeF = True). Experiments 3, 4 and 5 are on
Covers1 dataset, while Experiments 6 and 7 are on Covers2
dataset. In Covers1 dataset, the mean recalls (Recognition
Rate) over the 121 sub-experiments in Experiments 3,4 and
5 are 56.93%, 56.35%, and 72.18% respectively. The signifi-
cant increase in the performance is when the resolution is 640
of test image. In Covers2 dataset (Experiment 6 (480 pixel),
7 (640 pixel)), mean recalls (Recognition Rate) over the 121
cases on Experiments 6 and 7 are 21.07% and 26.86% respec-
tively. This indicates the same behavior relatively on Covers2
dataset. The conclusion here is that the best test max resolu-
tion is 640 in both Covers1 and Covers2 datasets and it has a
significant influence on the recognition performance.

4.3. Distances and Angles’ Effect

From the reported results, it is obvious that the recognition ac-
curacy on Covers2 is worse on average. This is due to distance
and angles challenges in Covers2 dataset. In this subsection
, The recognition performance is analyzed based on the two
datasets in terms of both distances and the angles.

4.3.1. Covers1 Dataset (Experiments 3, 4, and 5)

It is obvious from the results that 640-resolution version of
Covers dataset gives the best results. In this subsection, These
results of Experiments 3 , 4 and 5 analyze in terms of Dis-
tance/ Angle groups . Table 5 compares the recall of the
100% (model image jpeg quality) × 100% (test image jpeg
quality) case for Experiments 3, 4 and 5. The table shows that
a significant increase in the recognition of far and medium ob-
ject while the resolution increases.

100%×100% case Recall
Resolution 320 480 640
C - 0 deg 81% 93% 90%
C - 10 deg 86% 93% 90%
C - 30 deg 54% 81% 97%
C - 45 deg 6% 38% 47%
M - 0 deg 47% 88% 95%
M - 10 deg 56% 84% 81%
M - 30 deg 9% 34% 81%
F - 0 deg 0% 20% 61%
F - 10 deg 6% 20% 70%

Table 5: Experiments 3, 4 and 5: Angle / Distance Analy-
sis (100% × 100% case), where C, M and F denote Close,
Moderate distant and Far respectively.

4.3.2. Covers2 Dataset (Experiments 6 and 7)
Table 6 compares the recall of the 100 (Train)×100 (Test)
JPEG quality case from Experiments 6 and 7. Similarly, a
significant increase in the recognition of far and moderate-
distant objects as the resolution increases. Comparing results
of Covers1 and Covers2 datasets, it could be concluded, that
Distance and Angle complexity does impart the performance
more than adding noisy background to the object to be recog-
nized.

100%×100% case Recall
Resolution 480 640
C - 0 deg 90% 93%
C - 10 deg 88% 93%
C - 30 deg 79% 88%
C - 45 deg 54% 65%
C - 60 deg 25% 36%
M - 0 deg 2% 22%

M - 10 deg 6% 22%
M - 30 deg 6% 15%
M - 45 deg 0% 2%
M - 60 deg 0% 2%
F - 0 deg 0% 0%
F - 10 deg 0% 0%
F - 30 deg 0% 0%
F - 45 deg 0% 0%
F - 60 deg 0% 0%

Table 6: Experiments 6 and 7: Angle/Distance Analysis
(100%× 100% case)

5. CONCLUSION

The bottom-line of this study is summarized in the following
ten points. (1) The experiments shows logarithmic increase
behavior of the recognition performance, while the JPEG
quality ratios change in both dimensions (i.e. jpeg quality of
model image and test image). The performance settles after
certain percentage of JPEG quality (20%-30%). (2) The ad-
vantage of lower bit rate descriptors could be combined with
the conclusion about JPEG qualities presented in this paper to
address the trade-off between the performance and bandwidth
limitations. (3) Database size decreases as the JPEG quality
increases. However, it settles starting 30% JPEG quality.
(4) Distance and Angle complexity is more challenging than
adding noisy background to the object to be recognized in the
test image. (5) Upsampling increases recognition accuracy
with about 10% on average with a penalty of high compu-
tational time ( 3X on average). (6) Image size compared
against different quality ratios seems to have exponential
growth. This indicates significant drop in the image file size
as the JPEG quality decreases, which is beneficial. (7) The
best test max-dim resolution is 640 , reflecting a significant
effect on recognition performance on both Covers1 and Cov-
ers2 datasets. (8) The higher is the test image resolution, the
more accurate is the SIFT matching against Distance/Angle
challenges. (9) Test images, with angles greater than 45 de-
gree, are poorly recognized even in close pictures using affine
matching. (10) The size of object should be around 20% or
more of the test image to be fairly recognized.
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