Platform-Independent Code Conversion within the
C++ Locale Framework

Lars Engebretsen

Department of Numerical Analysis and Computer Science,
Royal Institute of Technology,
SE-100 44 Stockholm
SWEDEN

February, 2005

Abstract. This paper describes some of the author’s experiences from a C++ imple-
mentation of a concordance program for texts in Old West Norse (also known as
0ld Icelandic) and Runic Swedish. Since the input to the program used a charac-
ter repertoire that no standard one-byte character encoding covers, it was natural
to use Unicode to represent data both inside the program and in external files.
Inside the program, each character was represented with C++ “wide characters”;
the input and output was represented in UTF-8. The author constructed C++ code
conversion facets that convert data between those two representations during file
1/0. This enabled him to successfully compile, and run, the concordance program
on both Linux (Fedora Core 3 with gcc 3.4.2) and Windows XP (using Visual C++
NET 2003). The only necessary change to the source when changing platform was
isolated to the lines selecting which code conversion facet to use—all other pieces
of code remained unchanged. In particular, the author could still use the standard
C++ locale framework for collation and code conversion, in spite of the fact that
the library-provided code conversion facets had been replaced.

Key words. C++, Locale, Code Conversion

1 INTRODUCTION

Between 1993 and 1997, a database covering all Scandinavian runic inscriptions
was compiled [1, 5]. By the time of this writing (February 2005), the latest
update of the database, announced in September 2004, is available on URL
«http://www.nordiska.uu.se/samnord.html». This paper documents the experi-
ences drawn from the implementation of a concordance program for the entire
database. While the task of generating a concordance is well understood—and
in this case particularly easy since the entire database and the concordance
together fit in memory on any modern desktop computer—the fact that the
database contains texts in arcane languages puts focus on some technicalities
in the implementation. The characters required to properly represent the text
in the database are not contained in any standard one-byte character encoding.
Therefore, the author decided to store the text in the database using Unicode

http://www.nordiska.uu.se/samnord.html

encoded with UTF-8. Inside the concordance program, however, it would be eas-
ier to work with an encoding where each character is represented by the same
number of bytes. Also, the sorting keys used to construct the concordance had
to be converted into lower case by the concordance program. Finally, it was
desirable, although not strictly necessary, to collate the resulting concordance
according to slightly non-standard collation rules.

The C++locale framework aims at giving a standardized interface to concepts
that are inherently system dependent, namely how software is adapted to users’
language and cultural conventions. There are several components in a locale,
such as formatting of numbers, formatting of dates, formatting of monetary
values, collation of strings, classification of characters, and code conversion—in
C++ these components are modeled by so called facets. The by far most portable
way to perform case conversion and collation of arbitrary text is to use the
corresponding facets of the standard locale provided by the system. There are
standard C++ library functions that operate on C++ strings, i.e., on objects of type
std::string and std: :wstring. For the application considered in this paper,
the natural choice was to use wide strings inside the program and UTF-8 en-
coded text files for input and output. To read from a file stream corresponding
to a file where the characters are encoded with UTF-8 into into C++ wide strings
requires code conversion. Naturally, code conversion is also required when writ-
ing to UTF-8 encoded files. For this task, the standard C++ locale framework
contains so called code conversion facets. However, while most parts of the C++
locale framework are well described, not only in the C++ standard [3] but also
in books [4} 6], the aspect of code conversion is only described to any sufficient
detail in the C++ standard [3]. The reason for this is no doubt partly that the
interaction between code conversion facets and 1/0 streams is the most imple-
mentation specific parts of the locale framework. However, it also seems that
the code conversion facets were introduced into the standard at a relatively late
stage. In fact, previous editions of the C++ standard [3] had slight ambiguities
in the definition of the code conversion parts of the locale framework. Hence,
any practical experiences from code conversion using the standard C++ locale
framework are of general interest.

The purpose of this paper is to describe such experiences, obtained by the
author through an implementation of the concordance program. In particular,
the program was designed with the intention that it should be possible to com-
pile, and run, it on as many platforms as possible, also on platforms lacking
UTF-8 support in their standard locales. This platform-independence should
ideally come at a low cost, i.e., the amount of author-written code dealing with
the details of code conversion, case conversion and collation should be small.
Naturally, this introduces a trade-off. True platform-independence could be
achieved by completely removing the dependence on the locale framework pro-
vided by standard C++ and instead writing own routines. Using, on the other
hand, only functions provided by the standard C++ library, the amount of extra
code is reduced to a minimum but then the program is restricted to the func-

tionality provided by the surrounding operating system. The author settled for
a compromise between those two extremes. After a short overview of the runic-
text database and the concordance program, this compromise is described, and
motivated, below.

2 THE DATABASE AND THE CONCORDANCE PROGRAM

Before delving into the aspects of code conversion, case conversion and colla-
tion, we briefly describe the rest of the concordance program and the runic-text
database.

The aim of the Scandinavian Runic-text database project, conducted in 1993-
1997 [1], was to collect all Scandinavian runic texts in a single corpus. The
database consists of several text files. One file contains a transliteration of
the inscription, i.e., every grapheme (rune) is represented by a unique char-
acter. Within the field of runic studies, there are well-established conventions
for how runes should be transliterated. The version of the database available
for download from «http://www.nordiska.uu.se/samnord.html» does not quite
follow those conventions, though. In her presentation of the project, Lena Pe-
terson wrote that “the limitations of the computer keyboard forces us to make
use of some unconventional signs” [5, p 307]. With the advent of Unicode [7] it
is no longer necessary to use hacks and work-arounds; the four non-ASCII char-
acters needed to transliterate runes are now readily available: 1) “Latin small
letter ae” z (U+00E6). 2) “Latin small letter o with stroke” @ (U+00F8), 3) “Latin
small letter eng”: y (U+014B). 4) “Latin letter small capital r”: r (U+0280).

Another file in the database contains word-by-word translations of the in-
scriptions into normalized Old West Norse, also known as 0Old Icelandic. Since
the spelling of the same word varies greatly from inscription to inscription, this
file enables researchers to search for all occurrences of a particular word. Old
West Norse is conventionally written with quite a few non-ASCII characters;
see for instance Table [1] which shows parts of some inscriptions containing the
word “runes”. In addition to the accented vowels and the letters e, £, 9, @, b, P,
and 8, which are all covered by the Latin-1 character set [2], the following char-
acters are needed: “Latin ligature oe” - & (U+0152) and ce (U+0153) - together
with “Latin letter o with ogonek” - Q (U+01EA) and ¢ (U+01EB).

Each of the files in the runic-text database project contains one inscription
per line, hence the database is read by the concordance program on a line-
by-line basis. As mentioned above, the author converted the database files to
UTF-8 and used the “proper” characters for transliterations of inscriptions and
translations of inscriptions into Old West Norse. The conversion between UTF-8
and C++ wide characters during file 1/0 is described below.

Inside the concordance program, each line in Table[1|corresponds to a pair of
a C++ std: :wstring (the key) and a C++ object of type Entry (the line and the
index of the word in the line). The inner workings of this latter object is omitted

http://www.nordiska.uu.se/samnord.html

ranar

DR 209 sinn ok hans kona ept ver sinn. En Séti reist rinar pessar ept dréttin sinn. Pérr vigi pessar
DR 209 runar pessar ept drdttin sinn. Pérr vigi pessar rinar. §C At raeta(?) sé verdi er stein penna

G 203 bjartr 4 bergi, en bré fyrir. 8D Hré8bjorn risti riinar pessar, Geirl[eifr sumar, er gorla kann.
HS 11 Gud hjalpi sélu hans. Peir morkudu rdnar, Qlvir ok Brandr.

HS 14 En pa Gudrin. Freymundr Fégylfa sonr fadi rinar pessar. Vér séttum stein penna nordr {
N 393 Dréttinn hjalpi peim manni, er pessar runar reist, sva peim, er peer reedr.

0G 64 stein penna ept Greip, gilda sinn, Léfi reist rinar pessar, Judda/Juta son.

0G 136 Eptir Vém43/Vaméd standa rinar peer. En Varinn fadi, fadir, eptir feigjan

SO 54 landbornir menn, létu rétta stein. Steinkell reist rinar.

$0 333 {Kalmarna sundum, féru af Skéney. Askell risti rénar pessar.

SO 205 at brédur sinn. Asbjorn ok Tidkumi hjoggu rinar. Orcekja(?) steindi(?).

U 532 sinn. Gud hjalpi ond hans. Porbjorn Skald hjé rinar.

U654 drepinn. Gud hjalpi ond peira. Alrikr(?) reist-ek rinar. Er kunni vel knerri styra.
U 687 var daudr { Holmgardi { Olafs kirkju. GEpir risti rtnar.

U 897 Sigvidr, sonr Gillaugar, reisti runar eptir Ragnelfi, sveeru sina.

Table 1. Some of the 300 entries corresponding to the word riinar (runes) in the
concordance. The left column shows the index of the inscription. This table con-
tains lower case versions of all characters needed to write normalized Old Norse.

since it is of no interest for the main topic of this paper. For every word on every
line, the corresponding key and Entry object is constructed and stored in a C++
multimap. As can be seen from Table [1} some words need to be “cleaned” before
they can become proper keys. Specifically, punctuation characters, parentheses
and braces must be removed. This is easy to accomplish with standard C++
string functions once the word has been stored in a std: :wstring. The keys
are also converted to lower case—unless they are actually the name of a person
or a place—using the C++ locale framework as described below.

Once the entire database file has been processed as outlined above, the re-
sulting concordance is output by iterating through the multimap. In fact, it
turns out that by using the C++ locale framework it is possible to get the mul-
timap containing the concordance sorted as new elements are inserted. The
rest of this paper describes in detail the main interesting, from a modern pro-
grammer’s point of view, parts of the concordance program: the conversion
between UTF-8 and the internal character representation during file 1/0, the
case conversion, and the collation.

3 CODE CONVERSION

In the C++ standard library, code conversion takes place when reading from, and
writing to, buffered streams. The problem addressed by code conversion is that
when accessing a stream corresponding to some file, it may happen that the
characters in the file are encoded in some way that is specific to the cultural
conventions of the user of the program. In particular, the user’s locale usually
specifies the user’s default character encoding. The simplest possible conversion
is, of course, to not convert at all, and this is also usually the default conversion

applied to normal, “narrow” streams. For wide character streams, however, the
situation is more complex. Let us remark, that “wide” in this context refers
to the way the stream is seen from within the C++ programs. Reading from a
wide C++ stream produces wide C++ characters, i.e., characters of type wchar_t,
no matter what the underlying file looks like. Roughly speaking, the bytes read
one by one from, say, a file must therefore be converted into Unicode characters;
note that it may happen that several bytes correspond to one Unicode character.

To be more precise, the C++ standard mandates that the C++ type wchar_t
should be able to “represent distinct codes for all members of the largest ex-
tended character set specified among the supported locales” [3} § 3.9.1, q 5].
Hence, the standard does not require implementations to use Unicode as the
encoding of wide characters, even though this is typically the case. Note, also,
that the size of type wchar_t is not specified by the standard—on Unix systems
it is typically 32 bits while it is 16 bits in, e.g., Windows XP. A consequence of
this is that code conversion facets are inherently platform dependent, at least
if they convert to and from the C++ type wchar_t. Using the type wchar_t is
a natural choice since that type is supported by the standard C++ locale frame-
work; the routines for collation and case conversion provided by the C++ stan-
dard library can then be used without any problems. The only other datatype
supported by the locale framework in the C++ standard library is char, but, as
mentioned above, no character encoding that covers all characters needed in
the concordance would fit in a char.

3.1 Using library-provided code conversion facets

From the discussion above, it would seem that the easiest possible solution—
from the programmer’s point of view—is to rely on the code conversion facets
provided by the C++ runtime libraries. This is, however, insufficient for the
purposes of the concordance program—at least given the convention that the
database files are fixed and use UTF-8 encoding or, indeed, any other fixed en-
coding. The main problem is that the code conversion facets provided by the
C++ environment typically use the operating system’s locale framework to de-
cide what kind of code conversion to perform. On Unix systems, it is generally
possible to change only the code conversion aspects of the locale by modify-
ing the environment variable LC_CTYPE. In, e.g., Windows XP it seems that the
locale is more monolithic: If, for instance, Swedish or Icelandic collation is de-
sired, it appears to be impossible to specify UTF-8 as the character encoding
using the standard operating system locale framework. The C++ locale frame-
work is far more flexible than this since individual facets may be changed in a
locale, thus producing a new locale. Alas, letting the operating system’s locale
specify code conversion makes it impossible to take advantage of this flexibility
in a Windows XP environment. Therefore, there is only one way to get reason-
able platform-independence and at the same time the flexibility of specifying
that data files are always in UTF-8 no matter the locale selected by the user:

The application programmer must specify the code conversion explicitly, using
an explicitly specified code conversion facet.

3.2 Implementing and using one’s own C++ code conversion facet

A code conversion facet provides means for converting between external and
internal representations of characters. In our case, the external representa-
tion is a sequence of bytes that should be interpreted as characters encoded
according to UTF-8; the internal representation is a sequence of wchar_t. On
a slightly more detailed level, these conversion capabilities are implemented by
functions that convert some sequence from one representation to the other. To
slightly complicate things, it may happen that several characters of one repre-
sentation are needed to produce one character in the other representation, and
vice versa. The conversion could also be stateful, i.e., there could be some kind
of shift sequence stating that all subsequent characters should be given special
treatment until an unshift sequence occurs. A detailed description of C++ code
conversion facets can be found in the C++ standard [J3] § 22.2.1.5].

As an illustration, the code conversion facet converting from UTF-8 to UTF-
32, i.e., to Unicode characters represented as 32-bit wide characters, is included
in Appendix A. The functions do_in() and do_out () perform the actual con-
version; there is also a function do_length() that computes the number of
wide characters in the internal representation needed to represent some given
sequence of characters in the external representation. The functions do_in()
and do_out () also check for ill-formed code units, see the Unicode standard [7}
§ 3.9] for the precise details regarding ill-formed code units in the different
Unicode encoding forms.

Since wchar_t only holds 16 bits in Windows XP, the code conversion facet
given in Appendix A would not work in that environment. Instead, a slightly
modified facet must be used, that produces UTF-16 code units, with so called
“surrogate pairs” as needed, in the internal representation. The resulting code
conversion facet is very similar to the one in Appendix A.

Once the new code conversion facet has been specified it is straightforward
to create a locale that uses it: the C++ class std: : locale has a constructor that
constructs a new locale object from an old one with a new facet.

std: :codecvt<wchar_t, char, mbstate_t> *fromUTFS;
if (runningWindows)

fromUTF8 = new UTF8_UTF16<wchar_t, char>(); // 16-bit wchar_t
else

fromUTF8 = new UTF8_UTF32<wchar_t, char>(); // 32-bit wchar_t

// Use the default locale with the UTF8 code conversion facet added.
std::locale loc(std::locale(""), fromUTF8);

It is not enough to just create a new locale for the new code conversion to apply;
In order to actually use the facet one imbues the desired files with the locale.

std::wifstream in("datafile.txt");
in.imbue(loc);

After that, the specified code conversion will be applied by the C++ standard
library functions during file 1/0. 1t is, consequently, possible to use some code
conversion facet for reading some specified file, another facet for reading from
some other specified file and a third facet for writing output, should such be-
haviour be desired.

Note that the choice of code conversion facet, although platform dependent,
need only be present at one place in the source code. The choice can either be
dynamic, as above, or static, governed by some configuration script or prepro-
cessor directive. Hence, we do not obtain true platform independence, but we
have isolated the platform dependence to a couple of lines at one place in the
C++ source code. This slight inconvenience gives us the freedom of combining
any collation order—specified in the “usual” way by the user selecting a cer-
tain locale according to the conventions of his or her particular platform—with
file 1/0 using UTF-8 encoded files. For this project the author modified the
standard Icelandic locale on his Linux system to produce a new locale with a
collation order of Old West Norse words that feels natural for Swedish-speaking
users.

Since all codepoints in the Unicode Basic Multilingual Plane have identical
representations in UTF-16 and UTF-32, it is possible to come even closer to
platform independence for applications that only work with such codepoints: In
such cases, a facet that only accepts code points within the Basic Multilingual
Plane exhibits the correct behaviour both for 16-bit and 32-bit wchar_t. For
the particular application studied in this paper—the concordance program for
Old West Norse and Runic Swedish—this approach works without flaws since all
characters needed to represent Runic Swedish and Old West Norse are present
within the Basic Multilingual Plane. There are, of course, settings where the
approach outlined here leads to erroneous behaviour.

3.3 Towards true platform-independence

The fact that it was necessary to let the selection of code conversion facet de-
pend on the platform in the solution proposed above is, if not inconvenient, at
least esthetically unpleasing. One way to remedy this would be to define a data
type, say utf32_t, guaranteed to hold every Unicode character and then define
C++ strings using this data type as the underlying character type.

typedef std::basic_string<utf32_t> utf32_string;

At first, it seems straightforward to adapt the code conversion facet from Ap-
pendix A to this new setting: after all, the facet has the internal character type
as a template parameter. However, a moment’s reflection—or experimentation—
indicates that this is not the case.

In order for the approach to work, it is necessary to define character traits
for the new character type. Also, the fairly complex case conversion rules and

collation rules for Unicode strings must be implemented anew, since the stan-
dard C++ library only supports collation for the built-in character types. Con-
sequently, facets for code conversion and collation that use the new character
type ut£32_t must also be implemented. Hence, it seems that truly platform-
independent source code implementing code conversion, case conversion and
collation comes only at a high price in terms of the amount of source code that
must be written and maintained.

4 COLLATION AND CASE CONVERSION

Using the approach outlined in § with the text represented internally as
standard C++ wide strings, is is straightforward to perform collation: To collate
the entries in the concordance, it is enough to supply the desired locale as a
template parameter to the C++ multimap used to store the entries. Concretely,
this data structure was initialized by the statement

std::multimap<std::wstring, Entry, std::locale> concordance(loc);

where loc is the locale object created as described in § Since only the
code conversion facet of the locale had been replaced, the collation behaviour
of the program is then defined by the surrounding operating system’s locale.
Similarly, the author used the following function object to conveniently convert
C++ strings into lower case:

struct ToLower {

ToLower(std::locale& 1) : loc(1l) {}

wchar_t operator() (wchar_t c) { return std::tolower(c, loc); }
private:

std::locale& loc;
3

An C++ wide string, say word, can then be transformed into lower case by the
statement

std: :transform(word.begin(), word.end(), word.begin(), ToLower(loc));

Also in this case, the program performs the conversion according to the system’s
locale. To be precise, the C++ standard states that the function std: : tolower ()
“returns the corresponding lower-case character if it is known to exist, or its
argument if not” [3} § 22.2.1.1.2, 9 10]. Therefore, it may happen that a character
is not case converted. For instance, there are situations when case conversion
of a single character produces multiple characters—the best known example is
probably the German “sharp s”: it is one character (R) in lower-case but two
characters (SS) in upper case. Clearly, the function std::tolower() is not
adapted for cases like this and will most likely just return its argument for such
problematic inputs.

5 CONCLUSIONS

This paper describes experiences drawn from the implementation of a concor-
dance program for texts in arcane languages. The overall aim of the implemen-
tation was to write a program that used the standard C++ locale framework as
much as possible. With only small amounts of platform-specific source code,
it was possible to write a program that compiles cleanly both in modern Linux
environments (Fedora Core 3 with gcc 3.4.2) and in Windows XP (with Visual
Studio .NET 2003). The particular code written to supplement the standard C++
locale framework consisted only of a new code conversion facet that converts
data between the external representation—fixed to UTF-8 on all platforms by
design—and the internal representation—characters stored in the standard C++
type wchar_t according to the conventions of the operating system. In fact,
it was possible to use the same source code in both Linux and Windows XP
by making the assumption that the concordance program would never have to
handle characters outside the Unicode Basic Multilingual Plane. Having intro-
duced this assumption, a natural next step is to ask what other consequences
and trade-offs the chosen implementation strategy implies.

On the positive side, the choice to rely on the standard C++ library functions
to perform collation and case conversion freed us from the burden of imple-
menting this functionality. Also, the user of the program can affect, e.g., the
sorting order by selecting a proper locale. The fact that the code conversion
facet used does not dependend on the locale selected by the user means that
the the datafiles used by the concordance program will always be correctly in-
terpreted, no matter the current default locale. This flexibility comes at a very
low price—we only had to implement the proper code conversion facet. As
mentioned above, it is easy to write a code conversion facet that correctly in-
terprets characters in the Unicode Basic Multilingual Plane on platforms that
use Unicode with either UTF-16 or UTF-32 for characters stored in a wchar_t.
The C++ standard does not require that Unicode is used for characters of type
wchar_t; it does in fact not even require wchar_t to hold 16 bits. Nevertheless,
the assumption that most operating systems will indeed use Unicode encoded
either with UTF-16 or UTF-32 for strings with wchar_t as the underlying char-
acter type seems to be a very weak one. The approach proposed in this paper
therefore provides a way to write programs that are completely portable, with
no change to the source code, given that they only process characters from the
Unicode Basic Multilingual Plane.

On the negative side, some of the functionality required by the concordance
program is available only if it is supported by the C++ runtime libraries on the
particular platform where the program is compiled and executed. As an exam-
ple, the author tried to compile the program with SunOneStudio 8 and then run
the program on a Solaris 5.9 machine. This experiment did not turn out too
well since the function used for case conversion could only case convert ASCII
characters. Also, the collation did not work as expected in that environment.

Indeed, it cannot be guaranteed that the program produces identical output
on all platforms since some aspects of the program’s functionality is governed
by the surrounding operating system. For a concordance program, it can be
argued that it is actually good that the user can specify the collation order—
an English-speaking user no doubt expects a different sorting order than an
Icelandic-speaking user would. There are, of course, other applications where
top priority is instead that the output is identical no matter the environment it
was produced in. For such applications, dependence on library-provided func-
tions and settings in the user’s environment is not desirable.

The project described in this paper also says something about the usefulness
of the C++ locale framework at large. It seems reasonable to expect that a pro-
gram requiring fairly basic Unicode functionality can be implemented within
the limits of standard C++. Reading and writing of characters should work well,
and also character classification and simple string manipulation—such as ma-
nipulation, substitutions, concatenation—can be expected to work. However,
already case conversion of arbitrary strings poses problems as the conversion
of German sharp s from lower (8) to upper (SS) case illustrates—case conver-
sions where the number of characters changes falls outside of the standard C++
local model. For programs requiring more advanced Unicode features, such as
conversion between different normalization forms and case conversion of ar-
bitrary strings, the only possible route is probably to rely on some third-party
library.

6 ACKNOWLEDGMENTS

The author wishes to thank Rune Palm for introducing him to Old West Norse,
Runic Swedish, and the need of a concordance for the Scandinavian runic-text
database.

References

1. Elmevik L, Peterson L. Samnordisk runtextdatabas. Nytt om runer: Meldingsblad om rune-
forskning 1993; 8:32 continued in 1997; 12:33-34.

2. ISO/IEC standard 8859-1:1998, Information technology - 8-bit single-byte coded graphic char-
acter sets - Part 1: Latin alphabet No. 1. 1SO/IEC, 1998.

3. ISO/IEC standard 14882:2003, Programming languages — C++ (2nd edn). ISO/IEC, 2003.
4. Langer A, Kreft K. Standard C++ [0Streams and Locales. Addison-Wesley, 2000.

5. Peterson L. Scandinavian runic-text data base: a presentation. In The Twelfth Viking Congress:
Developments Around the Baltic and the North Sea in the Viking Age, Ambrosiani B, Clarke H
(eds.), volume 3 of Birka Studies. Stockholm, 1994; 305-309.

6. Stroustrup B. The C++ Programming Language (special edn). Addison-Wesley, 2000.

7. The Unicode Standard, Version 4.0.0, defined by: The Unicode Standard, Version 4.0. Addison-
Wesley, 2003.

10

A SOURCE CODE FOR THE CODE CONVERSION FACET

template<typename internT = wchar_t, typename externT = char>

class UTF8_UTF32
{

using std::codecvt<internT, externT, mbstate_t>:
using std::codecvt<internT, externT, mbstate_t>:
using std::codecvt<internT, externT, mbstate_t>:
using std::codecvt<internT, externT, mbstate_t>:

protected:

rerror;
:noconv;
:0k;
:partial;

typename std::codecvt<internT, externT, mbstate_t>::result
do_out (mbstate_t&,

const internT* from,

const internT*& from_next,
externT* to, externT* to_end,
externT*& to_next) const

{

from_next = from;

to_next = to;

while(from_next < from_end) {
if (*from_next < 0x80) {
if(to_next + 1 > to_end) break;

*to_next++

}

const internT* from_end,

static_cast<externT> (*from_next++) ;

else if (*from_next < 0x00000800) {

if (to_next
*to_next++
*to_next++

+

from_next++;

}

2 > to_end) break;

static_cast<externT>(0xCO | (*from_next
static_cast<externT>(0x80 | (xfrom_next & 0x3F));

else if (*from_next < 0x00010000) {

if (xfrom_next >=

if (to_next
*to_next++
*to_next++
*to_next++

+

from_next++;

}

3 > to_end) break;

: public std::codecvt<internT, externT, mbstate_t>

>> 6));

static_cast<externT>(0xEO | (*from_next >>

static_cast<externT>(0x80 | (
static_cast<externT>(0x80 | (

else if (xfrom_next < 0x00110000) {
+ 4 > to_end) break;

if (to_next
*to_next++
*to_next++
*to_next++
*to_next++

from_next++;

}
else {

return error;

}
}

static_cast<externT> (0xFO
static_cast<externT>(0x80
static_cast<externT>(0x80
static_cast<externT>(0x80

(¢
¢
¢
(¢

return (from_next == from_end) 7 ok : partial;

}

11

(xfrom_next
*from_next

*from_next
(xfrom_next
(*from_next

*from_next

>>

>>
>>
>>

0xD800 && *from_next < 0xE000) return error;

12));
6) & 0x3F));
& 0x3F));

18));

12) & 0x3F));

6) & 0x3F));
& 0x3F));

typename std::codecvt<internT, externT, mbstate_t>::result
do_unshift (mbstate_t&,

externT* to, externTx,

externT*& to_next) const

to_next = to;
return noconv;

}

typename std::codecvt<internT, externT, mbstate_t>::result
do_in(mbstate_t&,
const externT* from, const externT* from_end,
const externT*& from_next,
internT* to, internT* to_end,
internT*& to_next) const
{
from_next = from;
to_next = to;

while(to_next < to_end && from_next < from_end) {
if ((*from_next & 0x80) == 0x00) {
*to_next++ = *xfrom_next++;
}
else if ((*from_next & 0xE0) == 0xCO) {
if (from_next + 2 > from_end) break;

*to_next = (xfrom_next++ & O0x1F) << 6;
if ((xfrom_next & 0xCO) != 0x80) return error;
*to_next |= x*from_next++ & Ox3F;

if (*to_next < 0x80) return error;
to_next++;
}
else if ((*from_next & OxF0) == 0xE0) {
if (from_next + 3 > from_end) break;
*to_next = (xfrom_next++ & O0xOF) << 12;
if ((*from_next & 0xCO) !'= 0x80) return error;
*to_next |= (*from_next++ & 0x3F) << 6;
if ((*from_next & 0xCO) !'= 0x80) return error;
*to_next |= x*from_next++ & O0x3F;
if (*to_next < 0x00000800) return error;
if (*to_next >= 0xD800 && *to_next < 0xE000) return error;
to_next++;
}
else if ((*from_next & O0xF8) == 0xF0) {
if (from_next + 4 > from_end) break;

*to_next = (*from_next++ & 0x07) << 18;

if ((*from_next & 0xCO) !'= 0x80) return error;
*to_next |= (*from_next++ & 0x3F) << 12;

if ((*from_next & 0xCO) '= 0x80) return error;
*to_next |= (*from_next++ & 0x3F) << 6;

if ((xfrom_next & 0xCO) != 0x80) return error;
*to_next |= x*from_next++ & Ox3F;

if (*to_next < 0x00010000 || *to_next >= 0x00110000) return error;
to_next++;

12

else {
return error;
}
}
return (from_next == from_end) 7 ok : partial;

}
int do_encoding() const throw() { return 0; }
bool do_always_noconv() const throw() { return false; }

int do_length(mbstate_t&, const externT* from,
const externT* end, size_t max) const

{
int len = 0;
while(from < end && static_cast<size_t>(len) < max) {
if ((xfrom & 0x80) == 0x00) {
from++;
}
else if ((*from & OxEO0) == 0xC0) {
if(from + 2 > end || (from[1] & 0xCO) != 0x80) break;
from += 2;
}
else if ((*from & 0xF0) == 0xE0) {
if (from + 3 > end ||
(from[1] & 0xCO) != 0x80 ||
(from[2] & 0xCO) !'= 0x80) break;
from += 3;
}
else if ((*from & 0xF8) == 0xF0) {
if (from + 4 > end ||
(from[1] & 0xCO) != 0x80 ||
(from[2] & 0xCO) != 0x80 ||
(from[3] & 0xCO) !'= 0x80) break;
from += 4;
}
else {
break;
}
len++;
}
return len;
}

int do_max_length() const throw() { return 4; }
};

13

	INTRODUCTION
	THE DATABASE AND THE CONCORDANCE PROGRAM
	CODE CONVERSION
	Using library-provided code conversion facets
	Implementing and using one's own C++ code conversion facet
	Towards true platform-independence

	COLLATION AND CASE CONVERSION
	CONCLUSIONS
	ACKNOWLEDGMENTS
	SOURCE CODE FOR THE CODE CONVERSION FACET

