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Abstract

The main question we address in this paper is how to
use purely textual description of categories with no training
images to learn visual classifiers for these categories. We
propose an approach for zero-shot learning of object cat-
egories where the description of unseen categories comes
in the form of typical text such as an encyclopedia entry,
without the need to explicitly defined attributes. We pro-
pose and investigate two baseline formulations, based on
regression and domain adaptation. Then, we propose a new
constrained optimization formulation that combines a re-
gression function and a knowledge transfer function with
additional constraints to predict the classifier parameters
for new classes. We applied the proposed approach on two
fine-grained categorization datasets, and the results indi-
cate successful classifier prediction.

1. Introduction
One of the main challenges for scaling up object recogni-

tion systems is the lack of annotated images for real-world
categories. Typically there are few images available for
training classifiers for most of these categories. This is re-
flected in the number of images per category available for
training in most object categorization datasets, which, as
pointed out in [27], shows a Zipf distribution. The problem
of lack of training images becomes even more severe when
we target recognition problems within a general category,
i.e., fine-grained categorization, for example building clas-
sifiers for different bird species or flower types (there are
estimated over 10000 living bird species, similar for flow-
ers). Researchers try to exploit shared knowledge between
categories to target such scalability issue. This motivated
many researchers who looked into approaches that learn
visual classifiers from few examples, e.g. [4, 9, 2]. This
even motivated some recent work on zero-shot learning of
visual categories where there are no training images avail-
able for test categories (unseen classes), e.g. [17]. Such ap-
proaches exploit the similarity (visual or semantic) between
seen classes and unseen ones, or describe unseen classes in

terms of a learned vocabulary of semantic visual attributes.
In contrast to the lack of reasonable size training sets

for a large number of real world categories, there are abun-
dant of textual descriptions of these categories. This comes
in the form of dictionary entries, encyclopedia articles, and
various online resources. For example, it is possible to find
several good descriptions of a “bobolink” in encyclopedias
of birds, while there are only a few images available for that
bird online.

The main question we address in this paper is how to
use purely textual description of categories with no train-
ing images to learn visual classifiers for these categories.
In other words, we aim at zero-shot learning of object cat-
egories where the description of unseen categories comes
in the form of typical text such as an encyclopedia entry.
We explicitly address the question of how to automatically
decide which information to transfer between classes with-
out the need of human intervention. In contrast to most re-
lated work, we go beyond the simple use of tags and image
captions, and apply standard Natural Language Processing
techniques to typical text to learn visual classifiers.

Similar to the setting of zero-shot learning, we use
classes with training data (seen classes) to predict classifiers
for classes with no training data (unseen classes).Recent
works on zero-shot learning of object categories focused on
leveraging knowledge about common attributes and shared
parts [17]. Typically, attributes [28, 7] are manually defined
by humans and are used to transfer knowledge between seen
and unseen classes. In contrast, in our work we do not use
any explicit attributes. The description of a new category is
purely textual and the process is totally automatic without
human annotation beyond the category labels.

The contribution of the paper is on exploring this new
problem, which to the best of our knowledge, is not ex-
plored in the computer vision community. We learn from
an image corpus and a textual corpus, however not in the
form of image-caption pairs, instead the only alignment be-
tween the corpora is at the level of the category. We pro-
pose and investigate two baseline formulations based on re-
gression and domain adaptation. Then we propose a new
constrained optimization formulation that combines a re-
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* The Bobolink is a small New World blackbird 
and the only member of Dolichonyx.
* They often migrate in flocks, feeding on culti-
vated grains and rice, which leads to them being 
considered a pest by farmers in some areas. 

* The Cardinals are a family of  passerine birds 
found in North and South America. The South 
American cardinals in the genus Paroaria are 
placed in another family, the Thraupidae.

* Visual differentiation from the American 
Crow is extremely difficult and often 
inaccurate. Nonetheless, differences apart from 
size do exist.
* Fish crows tend to have more slender bills.

Visual Classifier Space
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Figure 1: Problem Definition: Zero-shot learning with textual description. Left: synopsis of textual descriptions for bird
classes. Middle: images for “seen classes”. Right: classifier hyperplanes in the feature space. The goal is to estimate a new
classifier parameter given only a textual description

gression function and a knowledge transfer function with
additional constraints to solve the problem.

Beyond the introduction and the related work sections,
the paper is structured as follows: Sec 3 introduces the
problem definition and proposed baseline solutions. Sec 4
describes the solution framework. Sec 5 explains the ex-
periments performed on Flower Dataset [20] (102 classes)
and Caltech-UCSD dataset [32] (200 classes).

2. Related Work

Our proposed work can be seen in the context of knowl-
edge sharing and inductive transfer. In general, knowledge
transfer aims at enhancing recognition by exploiting shared
knowledge between classes. Most existing research fo-
cused on knowledge sharing within the visual domain only,
e.g. [12]; or exporting semantic knowledge at the level of
category similarities and hierarchies, e.g. [10, 27]. We go
beyond the state-of-the-art to explore cross-domain knowl-
edge sharing and transfer. We explore how knowledge from
the visual and textual domains can be used to learn across-
domain correlation, which facilitates prediction of visual
classifiers from textual description.

Motivated by the practical need to learn visual clas-
sifiers of rare categories, researchers have explored ap-
proaches for learning from a single image (one-shot learn-
ing [18, 9, 11, 2]) or even from no images (zero-shot learn-
ing). One way of recognizing object instances from previ-
ously unseen test categories (the zero-shot learning prob-
lem) is by leveraging knowledge about common attributes
and shared parts. Typically an intermediate semantic layer
is introduced to enable sharing knowledge between classes
and facilitate describing knowledge about novel unseen
classes, e.g. [22]. For instance, given adequately labeled
training data, one can learn classifiers for the attributes oc-
curring in the training object categories. These classifiers

can then be used to recognize the same attributes in object
instances from the novel test categories. Recognition can
then proceed on the basis of these learned attributes [17, 7].
Such attribute-based “knowledge transfer” approaches use
an intermediate visual attribute representation to enable de-
scribing unseen object categories. Typically attributes are
manually defined by humans to describe shape, color, sur-
face material, e.g., furry, striped, etc. Therefore, an unseen
category has to be specified in terms of the used vocabu-
lary of attributes. Rohrbach et al. [25] investigated extract-
ing useful attributes from large text corpora. In [23], an
approach was introduced for interactively defining a vocab-
ulary of attributes that are both human understandable and
visually discriminative. In contrast, our work does not use
any explicit attributes. The description of a new category is
purely textual.

The relation between linguistic semantic representations
and visual recognition have been explored. For example
in [4], it was shown that there is a strong correlation be-
tween semantic similarity between classes, based on Word-
Net, and confusion between classes. Linguistic semantics
in terms of nouns from WordNet [19] have been used in
collecting large-scale image datasets such as ImageNet[5]
and Tiny Images [30]. It was also shown that hierarchies
based on WordNet are useful in learning visual classifiers,
e.g. [27].

One of the earliest work on learning from images and
text corpora is the work of Barnard et al. [1], which
showed that learning a joint distribution of words and vi-
sual elements facilitates clustering the images in a seman-
tic way, generating illustrative images from a caption, and
generating annotations for novel images. There has been
an increasing recent interest in the intersection between
computer vision and natural language processing with re-
searches that focus on generating textual description of im-



ages and videos, e.g. [8, 16, 34, 14]. This includes generat-
ing sentences about objects, actions, attributes, patial rela-
tion between objects, contextual information in the images,
scene information, etc. In contrast, our work is different in
two fundamental ways. In terms of the goal, we do not tar-
get generating textual description from images, instead we
target predicting classifiers from text, in a zero-shot setting.
In terms of the learning setting, the textual descriptions that
we use is at the level of the category and do not come in the
form of image-caption pairs, as in typical datasets used for
text generation from images, e.g. [21].

3. Problem Definition

Fig 1 illustrates the learning setting. The information in
our problem comes from two different domains: the visual
domain and the textual domain, denoted by V and T , re-
spectively. Similar to traditional visual learning problems,
we are given training data in the form V = {(xi, li)}N ,
where xi is an image and li ∈ {1 · · ·Nsc} is its class la-
bel. We denote the number of classes available at training
asNsc, where sc indicates “seen classes”. As typically done
in visual classification setting, we can learnNsc binary one-
vs-all classifiers, one for each of these classes. Let us con-
sider a typical binary linear classifier in the feature space in
the form

fk(x) = cT
k · x

where x is the visual feature vector amended with 1, and
ck ∈ Rdv is the linear classifier parameters for class k.
Given a test image, its class is determined by

l∗ = arg max
k

fk(x)

Our goal is to be able to predict a classifier for a new cate-
gory based only on the learned classes and a textual descrip-
tion(s) of that category. In order to achieve that, the learning
process has to also include textual description of the seen
classes (as shown in Fig 1 ). Depending on the domain
we might find a few, a couple, or as little as one textual de-
scription to each class. We denote the textual training data
for class k by {ti ∈ T }k. In this paper we assume we are
dealing with the extreme case of having only one textual de-
scription available per class, which makes the problem even
more challenging. However, the formulation we propose in
this paper directly applies to the case of multiple textual de-
scriptions per class. Similar to the visual domain, the raw
textual descriptions have to go through a feature extraction
process, which will be described in Sec 5. Let us denote the
extracted textual feature by T = {tk ∈ Rdt}k=1···Nsc .

Given a textual description t∗ of a new unseen category,
C , the problem can now be defined as predicting a one-vs-
all classifier parameters c(t∗), such that it can be directly

used to classify any test image x as

c(t∗)T · x > 0 if x belongs to C
c(t∗)T · x < 0 otherwise (1)

In what follows, we introduce two possible frameworks
for this problem and discuss potential limitations for them,
which leads next to the proposed formulation.

3.1. Regression Models

A straightforward way to solve this problem is to pose it
as a regression problem where the goal is to use the textual
data and the learned classifiers, {(tk, ck)}k=1···Nsc

to learn
a regression function from the textual feature domain to the
visual classifier domain, i.e., a function c(·) : Rdt → Rdv .
The question is which regression model would be suitable
for this problem? and would posing the problem this way
give reasonable results?

A typical regression model, such as ridge regression [13]
or Gaussian Process (GP) Regression [24], learns the re-
gressor to each dimension of the output domain (the param-
eters of a linear classifier) separately, i.e. a set of function
cj(·) : Rdt → R. Clearly this will not capture the cor-
relation between the visual and textual domain. Instead, a
structured prediction regressor would be more suitable since
it would learn the correlation between the input and output
domain. However, even a structure prediction model, will
only learn the correlation between the textual and visual do-
main through the information available in the input-output
pairs (tk, ck). Here the visual domain information is en-
capsulated in the pre-learned classifiers and prediction does
not have access to the original data in the visual domain. In-
stead we need to directly learn the correlation between the
visual and textual domain and use that for prediction.

Another fundamental problem that a regressor would
face, is the sparsity of the data; the data points are the tex-
tual description-classifier pairs, and typically the number of
classes can be very small compared to the dimension of the
classifier space (i.e. Nsc � dv). In a setting like that, any
regression model is bound to suffer from an under fitting
problem. This can be best explained in terms of GP regres-
sion, where the predictive variance increases in the regions
of the input space where there are no data points. This will
result in poor prediction of classifiers at these regions.

3.2. Knowledge Transfer Models

An alternative formulation is to pose the problem as do-
main adaptation from the textual to the visual domain. In
the computer vision context, domain adaptation work has
focused on transferring categories learned from a source do-
main, with a given distribution of images, to a target domain
with different distribution, e.g., images or videos from dif-
ferent sources [33, 26, 15, 6]. What we need is an approach



Pure	  textual	  descrip/on	  of	  an	  
unknown	  object	  class:	  	  

Correla/on	  between	  Text	  descrip/on	  	  
and	  Images:	  
Learned	  on	  Known	  object	  classes	  during	  
Training:	  

Corr(T,	  X)	  

Learned	  Visual	  classifiers	  as	  Probability:	  

P(c|t)	  

Likelihood	  of	  Visual	  classifier	  “C”	  for	  
an	  object	  described	  by	  text	  “T”.	  
Learned	  on	  Known	  object	  classes	  
during	  Training:	  
	  

White	  Arum	  Lily:	  
It	  is	  a	  rhizomatous	  herbaceous	  
perennial	  plant,	  evergreen	  
where	  rainfall	  andtemperatures	  
are	  adequate,	  deciduous	  where	  
there	  is	  a	  dry	  season.	  

Garden	  Phlox:	  
Flowers	  may	  be	  pale	  blue,	  
violet,	  pink,	  bright	  red,	  or	  
white.	  Many	  are	  fragrant.	  
FerHlized	  flowers	  typically	  
produce	  one	  relaHvely	  large	  
seed.	  

Sweet	  Pea:	  
It	  is	  an	  annual	  climbing	  plant,	  
growing	  to	  a	  height	  of	  1–2	  
meters	  (nearly	  six	  feet	  and	  six	  
inches),	  where	  suitable	  
support	  is	  available.	  

Fire	  Lily:	  
These	  plants	  grow	  in	  
mountain	  meadows	  and	  
rocks.	  They	  prefer	  calcareous	  
soils	  in	  warm,	  sunny	  places,	  
but	  also	  grows	  on	  slightly	  acid	  
soils.	   v	   v	  

v	  

v	  

v	  
v	  v	  
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v	  
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Predic/ng	  the	  Visual	  Classifier:	  
In	  this	  step	  we	  generate	  a	  visual	  classifier	  for	  “Fire	  
Lily”	  –as	  unknown	  class—	  
By	  opHmizing	  a	  cost	  funcHon	  based	  on	  “Corr(T,X)”	  
and	  “P(c|t)”,	  which	  we	  have	  learned	  on	  “Known	  
Classes”.	  

Figure 2: Illustration of the Proposed Solution Framework for the task Zero-shot learning from textual description.

that learns the correlation between the textual domain fea-
tures and the visual domain features, and uses that correla-
tion to predict new visual classifier given textual features.

In particular, in [15] an approach for learning cross do-
main transformation was introduced. In that work a reg-
ularized asymmetric transformation between points in two
domains were learned. The approach was applied to trans-
fer learned categories between different data distributions,
both in the visual domain. A particular attractive character-
istic of [15], over other domain adaptation models, is that
the source and target domains do not have to share the same
feature spaces or the same dimensionality.

Inspired by [15], we can formulate the zero-shot learning
problem as a domain adaptation. This can be achieve by
learning a linear (or nonlinear kernalized) transfer function
W between T and V . The transformation matrix W can
be learned by optimizing, with a suitable regularizer, over
constraints of the form tTWx ≥ l if t ∈ T and x ∈ V
belong to the same class, and tTWx ≤ u otherwise. Here
l and u are model parameters. This transfer function acts
as a compatibility function between the textual features and
visual features, which gives high values if they are from the
same class and a low value if they are from different classes.

It is not hard to see that this transfer function can act
as a classifier. Given a textual feature t∗ and a test image,
represented by x, a classification decision can be obtained
by tT

∗Wx ≷ b where b is a decision boundary which can
be set to (l + u)/2. Hence, our desired predicted classifier
in Eq 1 can be obtained as c(t∗) = tT

∗W (note that the
features vectors are amended with ones). However, since
learning W was done over seen classes only, it is not clear
how the predicted classifier c(t∗) will behave for unseen
classes. There is no guarantee that such a classifier will put
all the seen data on one side and the new unseen class on
the other side of that hyperplane.

4. Problem Formulation
4.1. Objective Function

The proposed formulation aims at predicting the hyper-
plane parameter c of a one-vs-all classifier for a new unseen
class given a textual description, encoded by t and knowl-
edge learned at the training phase from seen classes. Fig
2 illustrates our solution framework. At the training phase
three components are learned:

Classifiers: a set of one-vs-all classifiers {ck} are learned,
one for each seen class.

Probabilistic Regressor: Given {(tk, ck)} a regressor is
learned that can be used to give a prior estimate for
preg(c|t) (Details in Sec 4.3).

Domain Transfer Function: Given T and V a domain
transfer function, encoded in the matrix W is learned,
which captures the correlation between the textual and
visual domains (Details in Sec 4.2).

Each of these components contains partial knowledge
about the problem. The question is how to combine such
knowledge to predict a new classifier given a textual de-
scription. The new classifier has to be consistent with the
seen classes. The new classifier has to put all the seen in-
stances at one side of the hyperplane, and has to be consis-
tent with the learned domain transfer function. This leads
to the following constrained optimization problem

ĉ(t∗) =argmin
c,ζi

[
cTc− αt∗TWc− β ln(preg(c|t∗))

+ γ
∑

ζi
]

s.t. : −(cTxi) ≥ ζi, ζi ≥ 0, i = 1 · · ·N
t∗

TWc ≥ l
α, β, γ, l : hyperparameters

(2)



The first term is a regularizer over the classifier c. The sec-
ond term enforces that the predicted classifier has high cor-
relation with tT

∗W. The third term favors a classifier that
has high probability given the prediction of the regressor.
The constraints −cTxi ≥ ζi enforce all the seen data in-
stances to be at the negative side of the predicted classifier
hyperplane with some missclassification allowed through
the slack variables ζi. The constraint t∗

TWc ≥ l en-
forces that the correlation between the predicted classifier
and t∗

TW is no less than l, this is to enforce a minimum
correlation between the text and visual features.

4.2. Domain Transfer Function

To learn the domain transfer function W we adapted the
approach in [15] as follows. Let T be the textual feature
data matrix and X be the visual feature data matrix where
each feature vector is amended with a 1. Notice that amend-
ing the feature vectors with a 1 is essential in our formula-
tion since we need tTW to act as a classifier. We need to
solve the following optimization problem

min
W

r(W) + λ
∑
i

ci(TWXT) (3)

where ci’s are loss functions over the constraints and r(·)
is a matrix regularizer. It was shown in [15], under con-
dition on the regularizer, that the optimal W in Eq 3 can
be computed using inner products between data points in
each of the domains separately, which results in a ker-
nalized non-linear transfer function; hence its complexity
does not depend on the dimensionality of either of the do-
mains. The optimal solution of 3 is in the form W∗ =

TK
− 1

2

T L∗K
− 1

2

X XT,where KT = TTT, KX = XXT. L∗ is
computed by minimizing the following minimization prob-
lem

min
L

[r(L) + λ
∑
p

cp(K
1
2

TLK
1
2

X)], (4)

where cp(K
1
2

TLK
1
2

X) = (max(0, (l − eiK
1
2

TLK
1
2

Xej)))
2

for same class pairs of index i,j, or =

(max(0, (eiK
1
2

TLK
1
2

Xej − u)))2 otherwise, where ek
is a vector of zeros except a one at the kth element, and
u > l (note any appropriate l, u could work. In our case,
we used l = 2, u = −2 ). We used a Frobenius norm
regularizer. This energy is minimized using a second order
BFGS quasi-Newton optimizer. Once L is computed W ∗ is
computed using the transformation above.

4.3. Probabilistic Regressor

There are different regressors that can be used, however
we need a regressor that provide a probabilistic estimate
preg(c|(t)). For the reasons explained in Sec 3, we also
need a structure prediction approach that is able to predict

all the dimensions of the classifiers together. For these rea-
sons, we use the Twin Gaussian Process (TPG) [3]. TGP
encodes the relations between both the inputs and structured
outputs using Gaussian Process priors. This is achieved by
minimizing the Kullback-Leibler divergence between the
marginal GP of the outputs (i.e. classifiers in our case) and
observations (i.e. textual features). The estimated regressor
output (c̃(t∗)) in TGP is given by the solution of the follow-
ing non-linear optimization problem [3] 1.

c̃(t∗) = argmin
c

[KC(c, c)− 2kc(c)Tu− η log(KC(c, c)

− kc(c)T(KC + λcI)
−1kc(c))]

(5)

where u = (KT + λtI)
−1kt(t∗), η = KT (t∗, t∗) −

k(t∗)Tu, KT (tl, tm) and KC(cl, cm) are Gaus-
sian kernel for input feature t and output vec-
tor c. kc(c) = [KC(c, c1), · · · ,KC(c, cNsc)]T.
kt(t∗) = [KT (t∗, t1), · · · ,KT (t∗, tNsc)]

T. λt and
λc are regularization parameters to avoid overfitting. This
optimization problem can be solved using a second order,
BFGS quasi-Newton optimizer with cubic polynomial line
search for optimal step size selection [3]. In this case
the classifier dimension are predicted jointly. In this case
preg(c|t∗) is defined as a normal distribution.

preg(c|t∗) = N (µc = c̃(t∗),Σc = I) (6)

The reason that Σc = I is that TGP does not provide predic-
tive variance, unlike Gaussian Process Regression. How-
ever, it has the advantage of handling the dependency be-
tween the dimensions of the classifiers c given the textual
features t.

4.4. Solving for ĉ as a quadratic program

According to the definition of preg(c|t∗) for TGP,
ln p(c|t∗) is a quadratic term in c in the form

− ln p(c|t∗) ∝ (c− c̃(t∗))T(c− c̃(t∗))

= cTc− 2cTc̃(t∗) + c̃(t∗)Tc̃(t∗)
(7)

We reduce− ln p(c|t∗) to−2cTc̃(t∗)), since 1) c̃(t∗)Tc̃(t∗)
is a constant (i.e. does not affect the optimization), 2) cTc
is already included as regularizer in equation 2. In our
setting, the dot product is a better similarity measure be-
tween two hyperplanes. Hence, −2cTc̃(t∗) is minimized.
Given − ln p(c|t∗) from the TGP and W, Eq 2 reduces to
a quadratic program on c with linear constraints. We tried
different quadratic solvers, however the IBM CPLEX solver
2 gives the best performance in speed and optimization for
our problem.

1notice we are using c̃ to denote the output of the regressor, while using
ĉ to denote the output of the final optimization problem in Eq 2

2http://www-01.ibm.com/software/integration/optimization/cplex-
optimizer



5. Experiments
5.1. Datasets

We used the CU200 Birds [32] (200 classes - 6033 im-
ages) and the Oxford Flower-102 [20] (102 classes - 8189
images) image dataset to test our approach, since they are
among the largest and widely used fine-grained datasets.
We generate textual descriptions for each class in both
datasets. The CU200 Birds image dataset was created based
on birds that have a corresponding Wikipedia article, so we
have developed a tool to automatically extract Wikipedia
articles given the class name. The tool succeeded to auto-
matically generate 178 articles, and the remaining 22 arti-
cles was extracted manually from Wikipedia. These mis-
matches happens only when article title is a different syn-
onym of the same bird class. On the other hand, Flower
image dataset was not created using the same criteria as the
Bird dataset, so classes of the Flower dataset classes does
not necessarily have corresponding Wikipedia article. The
tool managed to generate about 16 classes from Wikipedia
out of 102, the remaining 86 articles was generated manu-
ally for each class from Wikipedia, Plant Database 3, Plant
Encyclopedia 4, and BBC articles 5. We plan to make the
extracted textual description available as augmentations of
these datasets. Sample textual description can be found in
the supplementary material.

5.2. Extracting Textual Features

The textual features were extracted in two phases, which
are typical in document retrieval literature. The first phase
is an indexing phase that generates textual features with tf-
idf (Term Frequency-Inverse Document Frequency) config-
uration (Term frequency as local weighting while inverse
document frequency as a global weighting). The tf-idf is a
measure of how important is a word to a text corpus. The tf-
idf value increases proportionally to the number of times a
word appears in the document, but is offset by the frequency
of the word in the corpus, which helps to control for the fact
that some words are generally more common than others.
We used the normalized frequency of a term in the given
textual description [29]. The inverse document frequency is
a measure of whether the term is common; in this work we
used the standard logarithmic idf [29]. The second phase is
a dimensionality reduction step, in which Clustered Latent
Semantic Indexing (CLSI) algorithm [35] is used. CLSI is
a low-rank approximation approach for dimensionality re-
duction, used for document retrieval. In the Flower Dataset,
tf-idf features ∈ R8875 and after CLSI the final textual fea-
tures ∈ R102. In the Birds Dataset, tf-idf features is in R7086

and after CLSI the final textual features is in R200.

3http://plants.usda.gov/java/
4http://www.theplantencyclopedia.org/wiki/Main Page
5http://www.bbc.co.uk/science/0/

5.3. Visual features

We used the Classeme features [31] as the visual feature
for our experiments since they provide an intermediate se-
mantic representation of the input image. Classeme features
are output of a set of classifiers corresponding to a set of C
category labels, which are drawn from an appropriate term
list defined in [31], and not related to our textual features.
For each category c ∈ {1 · · ·C}, a set of training images
is gathered by issuing a query on the category label to an
image search engine. After a set of coarse feature descrip-
tors (Pyramid HOG, GIST, etc.) is extracted, a subset of
feature dimensions was selected [31], and a one-versus-all
classifier φc is trained for each category. The classifier out-
put is real-valued, and is such that φc(x) > φc(y) implies
that x is more similar to class c than y is. Given an image
x, the feature vector (descriptor) used to represent it is the
classeme vector [φ1(x), · · · , φC(x)]. The Classeme feature
is of dimensionality 2569.

5.4. Experimental Results

Evaluation Methodology and Metrics: Similar to zero-
shot learning literature, we evaluated the performance of an
unseen classifier in a one-vs-all setting where the test im-
ages of unseen classes are considered to be the positives and
the test images from the seen classes are considered to be
the negatives. We computed the ROC curve and report the
area under that curve (AUC) as a comparative measure of
different approaches. In zero-shot learning setting the test
data from the seen class are typically very large compared
to those from unseen classes. This makes other measures,
such as accuracy, useless since high accuracy can be ob-
tained even if all the unseen class test data are wrongly clas-
sified; hence we used ROC curves, which are independent
of this problem. Five-fold cross validation over the classes
were performed, where in each fold 4/5 of the classes are
considered as “seen classes” and are used for training and
1/5th of the classes were considered as “unseen classes”
where their classifiers are predicted and tested. Within each
of these class-folds, the data of the seen classes are further
split into training and test sets. The hyper-parameters for the
approach were selected through another five-fold cross val-
idation within the class-folds (i.e. the 80% training classes
are further split into 5 folds to select the hyper-parameters).
Baselines: Since our work is the first to predict classi-
fiers based on pure textual description, there are no other
reported results to compare against. However, we de-
signed three state-of-the-art baselines to compare against,
which are designed to be inline with our argument in
Sec 3. Namely we used: 1) A Gaussian Process Regres-
sor (GPR) [24], 2) Twin Gaussian Process (TGP) [3] as
a structured regression method, 3) Nonlinear Asymmetric
Domain Adaptation (DA) [15]. The TGP and DA baselines
are of particular importance since our formulation utilizes
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Figure 3: Left and Middle: ROC curves of best 10 predicted classes (best seen in color) for Bird and Flower datasets re-
spectively, Right: AUC improvement over the three baselines on Flower dataset. The improvement is sorted in an increasing
order for each baseline separately

Table 1: Comparative Evaluation on the Flowers and Birds
Flowers Birds

Approach Avg AUC (+/- std) Avg AUC (+/- std)

GPR 0.54 (+/- 0.02) 0.52 (+/- 0.001)
TGP 0.58 (+/- 0.02) 0.61 (+/- 0.02)
DA 0.62(+/- 0.03) 0.59 (+/- 0.01)
Our Approach 0.68 (+/- 0.01) 0.62 (+/- 0.02)
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Figure 4: AUC of the predicated classifiers for all classes of
the flower datasets

them, so we need to test if the formulation is making any
improvement over them. It has to be noted that we also
evaluate TGP and DA as alternative formulations that we
are proposing for the problem, none of them was used in
the same context before.
Results: Table 1 shows the average AUCs for the pro-
posed approach in comparison to the three baselines on both
datasets. GPR performed poorly in all classes in both data
sets, which was expected since it is not a structure predic-
tion approach. The DA formulation outperformed TGP in
the flower dataset but slightly underperformed on the Bird
dataset. The proposed approach outperformed all the base-
lines on both datasets, with significant difference on the
flower dataset. It is also clear that the TGP performance was
improved on the Bird dataset since it has more classes (more
points are used for prediction). Fig 3 shows the ROC curves
for our approach on best predicted unseen classes from the
Birds dataset on the Left and Flower dataset on the middle.
Fig 4 shows the AUC for all the classes on Flower dataset.
More results are attached in the supplementary materials.

Fig 3, on the right, shows the improvement over the
three baseline for each class, where the improvement is cal-
culated as (our AUC- baseline AUC)/ baseline AUC %. Ta-
ble 2 shows the percentage of the classes which our ap-
proach makes a prediction improvement for each of the
three baselines. Table 3 shows the five classes in Flower

Table 2: Percentage of classes that the proposed approach makes
an improvement in predicting over the baselines (relative to the
total number of classes in each dataset

Flowers (102) Birds (200)
baseline % improvement % improvement

GPR 100 % 98.31 %
TGP 66 % 51.81 %
DA 54% 56.5%

Table 3: Top-5 classes with highest combined improvement in
Flower dataset

class TGP (AUC) DA (AUC) Our (AUC) % Improv.

2 0.51 0.55 0.83 57%
28 0.52 0.54 0.76 43.5%
26 0.54 0.53 0.76 41.7%
81 0.52 0.82 0.87 37%
37 0.72 0.53 0.83 35.7 %

dataset where our approach made the best average improve-
ment. The point of that table is to show that in these cases
both TGP and DA did poorly while our formulation that is
based on both of them did significantly better. This shows
that our formulation does not simply combine the best of the
two approaches but can significantly improve the prediction
performance.

To evaluate the effect of the constraints in the objective
function, we removed the constraints −(cTxi) ≥ ζi which
try to enforces all the seen examples to be on the negative
side of the predicted classifier hyperplane and evaluated the
approach. The result on the flower dataset (using one fold)
was reduced to average AUC=0.59 compared to AUC=0.65
with the constraints. Similarly, we evaluated the effect of
the constraint tT

∗Wc ≥ l. The result was reduced to aver-
age AUC=0.58 compared to AUC=0.65 with the constraint.
This illustrates the importance of this constraint in the for-
mulation.

6. Conclusion and Future Work

We explored the problem of predicting visual classifiers
from textual description of classes with no training images.
We investigated and experimented with different formula-
tions for the problem within the fine-grained categorization



context. We proposed a novel formulation that captures in-
formation between the visual and textual domains by in-
volving knowledge transfer from textual features to visual
features, which indirectly leads to predicting the visual clas-
sifier described by the text. In the future, we are planning to
propose a kernel version to tackle the problem instead of us-
ing linear classifiers. Furthermore, we will study predicting
classifiers from complex-structured textual features.
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