

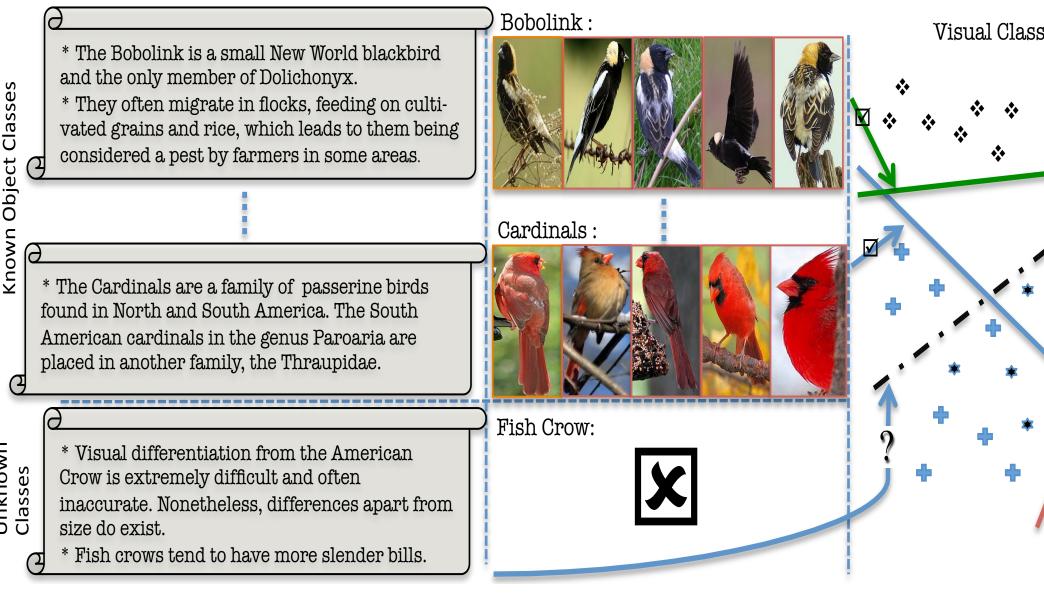
Computational Biomedicine Imaging & Modeling Center

Motivation

- One of the main challenges for scaling up object recognition systems is the lack of annotated images for real-world categories. Typically there are few images available for training classifiers for most of these categories; severe for fine-grained categorization.
- There are abundant of textual descriptions of these categories, which comes in the form of dictionary entries, encyclopedia articles, and various online resources. For example, it is possible to find several good descriptions of a "bobolink" in encyclopedias of birds, while there are only a few images available for that bird online.
- Attributes based approaches for zero shot learning deals with the dilemma of finding best set of visual attributes for object description.

Problem Definition

- The main question we address in this paper is how to use purely textual description of categories with no training images to learn visual classifiers for these categories.
- We propose an approach for zero-shot learning of object categories where the description of unseen categories comes in the form of typical text such as an encyclopedia entry, without the need to explicitly defined attributes.



Contributions

- First approach that predicts explicit visual classifier parameters of unseen classes from typical text, as encyclopedia entry.
- Two baselines were designed based on Regression and Domain Adaptation (DA) functions.
- We proposed a quadratic program that involves both Regression and DA functions.

Project Website: https://sites.google.com/site/mhelhoseiny/ projects/computer-vision-projects/Write_a_Classifier Includes the data. The code will be available shortly on it.

Write a Classifier: Zero Shot Learning Using **Purely Textual Descriptions**

Mohamed Elhoseiny*, Babak Saleh, Ahmed Elgammal **Department of Computer Science, Rutgers University**

Formulations

We denote textual features and visual features as $\mathbf{t} \in \mathcal{T}$ (textual domain) and $\mathbf{x} \in \mathbf{V}$ (visual domain), respectively. In all of our experiments, \mathbf{t} is tf-idf features and \mathbf{x} is classeme features.

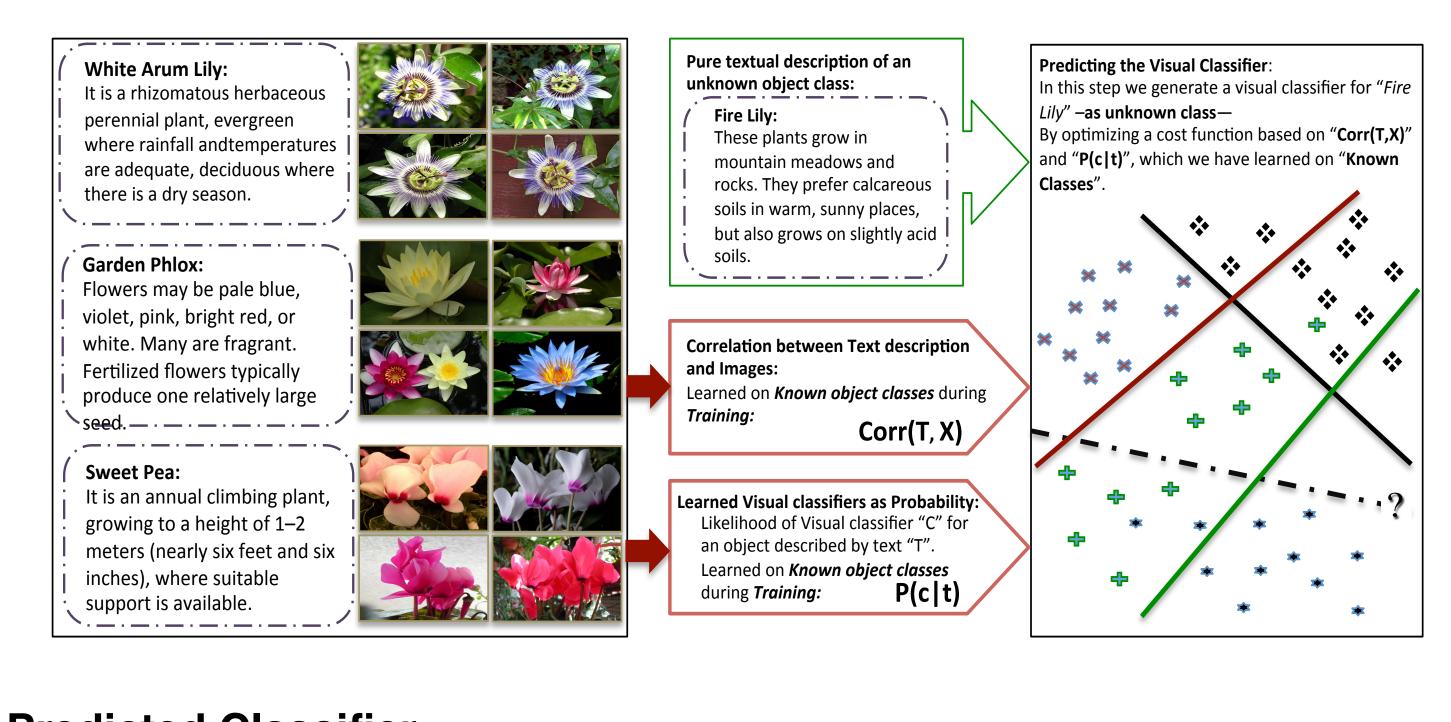
1) Regression (Reg) Baseline

- A set of one-vs-all classifiers $\{c_k\}$ are learned, one for each seen class. Given $\{(t_k; c_k)\}$, a regressor is learned that can be used to give a prior estimate for p_{reg} (clt). In our experiments, we used Gaussian Process Regression (GPR) and Twin Gaussian Processes (TGP).
- The predicted classifier for textual feature vector **t**, is obtained as $c_{req}(\mathbf{t}_{\star}) = \arg \max_{\mathbf{c}} [p_{req}(\mathbf{c}|\mathbf{t}_{\star})].$

2) Domain Adaptation (DA) Baseline

- A a linear (or nonlinear kernalized) transfer function W between γ and γ .
- W can be learned by optimizing, with a suitable regularizer, over constraints of the form $\mathbf{t}^T \mathbf{W} \mathbf{x} > 1$ if **t** and **x** belong to the same class, and $\mathbf{t}^{\mathsf{T}} \mathbf{W} \mathbf{x} < \mathbf{u}$ otherwise, where **x** is a visual feature vector amended by 1, 1 and u are model parameters.
- It is not hard to see that this transfer function can act as a classifier. Given a textual feature t and a test image, represented by x, a classification decision can be obtained by $\mathbf{t}^{\mathsf{T}} \mathbf{W} \mathbf{x} > \mathbf{b}$, we set b to $(\mathbf{I} + \mathbf{W})$ u)/2 .
- The predicted classifier is obtained as $c_{DA}(t_*) = t_*^T W$.

3) DA-Reg Quadratic Program (Better than 1 and 2)



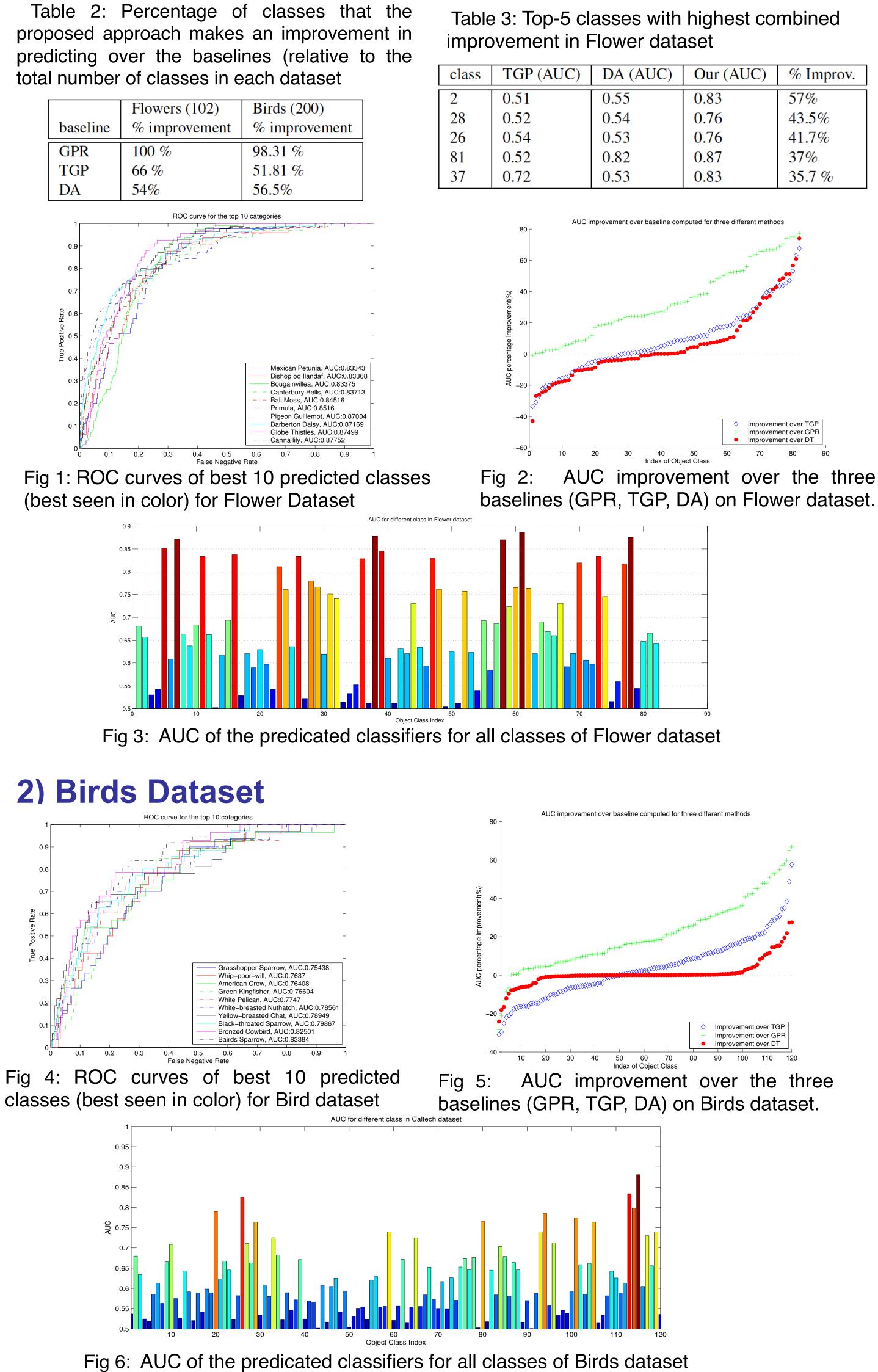
Predicted Classifier $\hat{c}(\mathbf{t}_*) = \operatorname{argmin}[\mathbf{c}^{\mathsf{T}}\mathbf{c} - \alpha \mathbf{t}_*^{\mathsf{T}}\mathbf{W}\mathbf{c} - \beta \ln(p_{reg}(\mathbf{c}|\mathbf{t}_*)) \cdot \{\mathbf{X}_i, i=1:N\}$ are the visual features $+\gamma \sum \zeta_i$ $s.t.: -(\mathbf{c}^\mathsf{T}\mathbf{x}_i) \ge \zeta_i, \ \zeta_i \ge 0, \ i = 1 \cdots N$ $\mathbf{t}_*^{\mathsf{T}} \mathbf{W} \mathbf{c} > l$ α, β, γ, l : hyperparameters

- of the images of the seen classes.
- Given In p_{rea} (**clt**) from the TGP and W, this equation reduces quadratic program on **c** to a with linear constraints

Experimental Results

- datasets.
- We computed the ROC curve and report the are under that curve (AUC) a comparative measure different approaches.

1) Flower Dataset



• We provide Text Augmentation of the CUB-Birds and Oxford-Flower

Table 1: Comparative Evaluation on the Flowers and Birds Datasets

JC '		Flowers	Birds
rea	Approach	Avg AUC (+/- std)	Avg AUC (+/- std)
as	GPR	0.54 (+/- 0.02)	0.52 (+/- 0.001)
e of	TGP	0.58 (+/- 0.02)	0.61 (+/- 0.02)
	DA	0.62(+/- 0.03)	0.59 (+/- 0.01)
	Our Approach	0.68 (+/- 0.01)	0.62 (+/- 0.02)